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representation of programs is identical to the representation of data: to
specify a computation, one defines a data structure. This data structure
possesses the semantics of a first-class naming environment-it defines a
scope and can be used to affect the evaluation environment of other expressions.

We present a new programming language called Symmetric Lisp based on the
symmetric model. Program structures in Symmetric Lisp are considered non-
strict: a program's components may be examined even as its other elements
continue to evaluate. The first part ot the thesis investigates the inter-

action of non-strictness with first-class naming environments. The second
part of the thesis discuss the compilation and implementation of Symmetric
Lisp. We present an extended type-inference system for first-class environ-
ments that can be used to infer the proper evaluation environment of identifiers
found within the scope of environment-yielding expressions. We also present
a translation of Symmetric Lisp into a high-level dataflow language.
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Abstract

Namespace management is fundamental (in a practical sense) to the design of any programming
language: how are naming environments built, and how are they used? Modern programming
languages come equipped with a variety of mechanisms to create and manipulate naming en-
vironments. These mechanisms fall into two broad categories: program structures and data
structures.

Program structures and data structures are treated differently in modern programming lan-
guages. Program structures are not considered to be data structures: they cannot be exam-
ined, nor can they be used as components of other data structures. Nor are data structures
considered to be programs: they do not specify a scope, nor can they contain expressions as
primitive components.

This thesis presents a new programming model called the symmetric model in which the repre-
sentation of programs is identical to the representation of data: to specify a computation, one
defines a data structure. This data structure possesses the semantics of a first-class naming
environment - it defines a scope and can be used to affect the evaluation environment of other
expressions.

We present a new programming language called Symmetric Lisp based on the symmetric model.
Program structures in Symmetric Lisp are considered non-strict: a program's components ma.
be examined even as its other elements continue to evaluate. The first part of the thesis
investigates the interaction of non-strictness with first-class naming environments. The second
part of the thesis discuss the compilation and implementation of Symmetric Lisp. We present
an extended type-inference system for first-class environments that can be used to infer the
proper evaluation environment of identifiers found within the scope of environment-yielding
expressions. We also present a translation of Symmetric Lisp into a high-level dataflow language.

Key Words and Phrases: Language Design, Modularity, Namespace Management, First-Class
Environments, Non-strictness, Non-Determinism, Programming Environments, Type Inference.
Dataflow Languages.
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Chapter 1

Introduction

A practical concern in the design of any programming language is the issue of namespace

management': what are the mechanisms by which naming environments are built, and what

constraints need to be imposed to use them sensibly? Modern day programming languages

come equipped with a variety of mechanisms to create and manipulate naming environments.

These mechanisms fall into two broad categories: program structures and data structures.

A program structure specifies a computation. Modules, begin-end blocks, packages, and classes

are examples of program structures. The expressions or statements evaluated within a compu-

tation communicate their results through a naming environment that is built and maintained

by the program's implementation. A naming environment is typically represented as a set of

bindings or name-value pairs that associate a name with the value it denotes in the program;

thus, the names found within an environment are the names declared within the program. An

environment is used as a namespace or scope within which evaluating expressions execute.

A data structure specifies a value or a collection of values. Records, arrays, streams and lists

are examples of data structures. Because data structures specify values, they can be examined

by expressions, passed as arguments to functions, or incorporated as components of other

data structures. Some data structures can also define names; a record, for example, defines a

1"Practical" as opposed to "fundamental": it is not theoretically necessary for a programming language

to support a notion of a naming environment. A pure combinator-based language such as FP[12] is a case
in point. With a suitable number of primitive functions and functional forms, it is possible to write every
computable function in a name-free language like FP. In a practical sense, however, the inability to write history-
sensitive programs in such languages makes them strictly less expressive than languages that do support naming
environments. It is for this reason that extensions to FP (such as FFP and AST) have been proposed that
allow the programmer to write new combining forms and history-sensitive programs; these extensions do support
(albeit implicitly) a notion of a naming environment.

9



10 CHAPTER . INTRODUCTION

collection of heterogeneous fields in which the value of a field is accessed through a particular

name.

Program structures and data structures are treated differently in modern programming lan-

guages. Naming environments are not considered as data structures: they cannot be examined,

nor" can they be used as components of other data objects. Data structures are not viewed

as programs: data structures do not define a scope nor can they contain expressions as their

primitive components. In particular, the names defined in a naming environment are treated

differently from those defined in a data structure such as a record - while a name binding

found in a local naming block can be used (implicitly) to affect the evaluation of expressions,

a binding found in a record cannot. These distinctions lead to a programming model in which

"program" is viewed as orthogonal to "data"; the implementation of a program structure in

terms of a naming environment is semantically unrelated to the way data structures are used

and represented.

This thesis presents a new programming model that is based on a very different notion of

what programs and data structures ought to be. In the symmetric model, the representation of

programs is identical to the representation of data: to specify a computation, one defines a data

structure. This structure can be examined and can be used as a component of other structures,

yet it has the same semantics as a naming environment - it defines a scope and can be used to

affect the evaluation of other expressions. A data structure in this model is a program in which

all component elements are values. In this model, there is only one kind of name and only one

way to associate a name with a value. Data and program have the same syntactic structure

and bear the same semantic import.

In order to investigate and judge the ramifications of such a model on program building in

general, we also develop a new programming language that provides direct support for the

symmetric model. Although one can conceive of many different interpreters for a symmetric

language, each implementing a different evaluation strategy, the operational semantics devel-

oped in this thesis views program structures as non-strict: a program's components may be

examined (since a program is a data object) even as its other elements continue to evaluate.

Under such a semantics, whenever two elements of a symmetric program are "spatially distinct"

(occur as separate components of the same data structure), they may evaluate simultaneously.

Parallelism of this sort combines with first-class naming environments to form an interesting
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synergy, and the investigation of their interaction forms the bulk of the thesis.

The central proposition of this thesis is that a symmetric programming model obviates the

need for the multitude of special-purpose program-building and data-constructing forms found

in languages based on other programming models; it is argued that the behaviour of these

forms can be subsumed within a single, simply described structure that possesses the salient

characteristics of both program and data.

1.1 Intuition

A program in a symmetric model is a map. To write a program, one draws a map of the

computation and hands this map to an interpreter for evaluation. A map is a collection of

heterogeneous regions that are connected in a well-defined way. Each region may have a name;

the contents of the region may contain either a value or a reducible expression. Because we

view a symmetric language program as a parallel program, the role of the symmetric language

interpreter is to develop the map (metaphorically) in the same way that a photographic negative

is developed, by operating on the entire surface simultaneously and in a uniform way. The object

returned by the interpreter is the same map with the contents of each region filled in with the

value denoted by the expression previously occupying the region.

A map containing reducible expressions is a "program-map"; a fully-developed map is a "data

structure".

Each region of a program-map may have a single name; but regions (even when unnamed)

always occupy unique positions. All names found within a map must be unique. Figure I

indicates the structure of a general map. The figure defines a map with four regions in which

the first region is named N1, the third region, named N3, itself consists of a map containing

two regions named N3 - 1 and N3 - 2 resp. The second region is unnamed.

Each region of the program-map contains either a primitive expression (e.g., a conditional or

arithmetic expression or function definition) or another, nested program-map. Every name

referred to within a primitive expression is either wired into the interpreter (like the names

"if" or "plus", say), or is the name of some other region. The named region may be in a map

enclosing the expression which references it or explicitly specified as part of the expression's

evaluation environment.



12 CHAPTER 1. INTRODUCTION

NS-1 NS-2

Figure 1 : Abstract Structure of a Symmetric Language Map

Expressions may refer to regions by name. If an expression found in region R refers to the

name N, then the interpreter resolves the reference by first searching for a region labelled N

in the map in which R resides. If such a region exists, its contents is returned and the search

terminates. If no such region is found in the current map, the search proceeds upward to the

map (call it M) enclosing the map in which R is found; if N is not defined in this map, the

search continues upward to the map enclosing the map of which M is a part; the search process

continues in this fashion, until a region with label N is encountered whereupon the search

terminates and the contents of its region is returned.

When an expression refers to the name N, then N refers to "the contents of the region labelled

N after it has has evaluated to a value". This means that, in developing a map, the evaluation

of a region blocks only if it requires the contents of another region still under evaluation. The

same rules apply recursively to maps nested within regions, so that in general, an expression

within a region may refer not only to names in its own sub-map but to names of regions defined

in enclosing super-maps.

The data structure generated from a program-map has the same structure as the program.

But every expression in the program-map has been replaced by its value, as determined by the
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evaluation rules discussed later. Every data structure map is a program that doesn't change

when it is evaluated, a program that is in "normal form".

Note that names are treated the same way regardless of whether they are found in a data

structure or a program. Names defined in program structures can be evaluated to yield the

value to which they are bound; names defined in data structures can be used to affect the

evaluation of other expressions because the data structure map itself defines a scope.

How does this model relate to an archetypical programming model such as the lambda calculus?

In the lambda calculus, one views programs and data structures as functions that map from some

set of input values to some set of output values. In the symmetric model, one views programs

and data structures as maps that, unlike functions, have a well-defined spatial interpretation. In

the symmetric model, there is no distinction between a program structure and a data structure:

every program is a data structure with a certain "shape" and physical manifestation. In the

lambda calculus, every data structure is a program that represents some computable function.

1.2 Why Symmetry?

What is "symmetric" about the symmetric programming model? Consider the semantics of

conventional data structures with respect to a space-time axis. Elements of a data structure

occupy distinct points along the space axis (hence, we can refer to the ih element of vector V, or

to the third field in record R). While the n elements of a data structure occupy n distinct points

along the space line, all n points usually occupy the same point along the time axis in the sense

that they all share the same extent. The elements of a record, for example, are usually created

together and their lifetime is usually fixed to be the lifetime of the record itself. Now consider

a basic program structure like a (sequential) compound block or statement sequence. The

elements of a block occupy distinct points along the time axis (hence, we can make assertions of

the form, "expression i evaluates after expression i + 1"). It is usually not possible to transpose

the order in which elements of a block are executed 2. On the other hand, all elements of a

compound block occupy the same point along the space axis: once an expression has finished

evaluating, the space it occupies can be reclaimed for use by the expression following it.

Hence, we see that data structures and program structures can be related to another in a
2This asertion is predicated on the assumption that expressions can side-effect the data they reference.
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natural way: they are symmetric transposes with respect to a space-time axis. In looking

at structures relative to their behaviour along this axis, we see that the symmetric language

map is the symbiosis of the compound block and the multi-field record: it is a shared-lifetime,

separate-space data structure.

1.3 Implications

What practical benefits does the symmetric programming model offer that other models do

not? Uniformity of program and data is the key difference: using tl, symmetric programming

model, one can devise useful programming paradigms that, in a very. ractical sense, depend on

a uniform treatment of program structures and data structures. We contend that the realization

of programs based on these paradigms would, in fact, be hindered were such uniformity not an

integral part of the programming model. Uniformity manifests itself in a number of different

ways:

Uniformity of Diverse Program Structures:

Because maps are the basic program structure in this model and simultaneously also the basic

data structure, programs can be written as maps and then examined and returned. One can

iterate over map versions of arbitrary records, blocks, modules or packages in the same way.

That a map represents a particular spatial arrangement is of importance beyond the fact that it

can be used to represent a conventional data structure. The activation structure of a symmetric

language function is represented as a map, as is the structure in which its actual and formal

parameters are stored. It is not the case that one struzture (the map) happens to be useful in two

unrelated domains (program and data structures); once the the artificial boundary separating

the two is torn down, many novel results follow. For example: if a program is written as a

linear map named Prog, it can be treated as a vector; once Frog has completed, one can iterate

over the entire structure by examining Prog[i] for all i. The arrangement of definitions and

expressions in a program is not a random attribute of some text file, but instead represents a

programmer decision with implications at runtime3.

3f Course, expressivity of this sort also comes with some costs. It may not be possible, for example, to build
an optimizing compiler that reorders or combines elements in a map to improve performance; we discuss the
implementation problems that a symmetric language faces in Chapter 6.
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To illustrate this point, consider a program that defines a record object R. Suppose that

several of R's fields are to be function-valued. Suppose, further, that we require many different

instances of R and, moreover, that each such instance is to be held in a specified library. We

also wish to add a new field to R that does not contain a passive data object, but an executable

statement, a loop, for example, that constantly monitors the status of R's other fields.

In most other languages, implementing such a structure would have required using a number of

different (and, often unrelated) module-structures: records to represent R's skeleton, packages[3]

to implement libraries, classes[23] to implement templates, and processes to implement R's

active components. A symmetric model, on the other hand, treats all these modularity devices

in a uniform and consistent way. The symmetric language programmer can preserve his idea of

modularity even as he expands the functionality of the basic module unit; he need not switch

from one superficially different module construct to another (and another, and so on).

Uniformity of Language-Level and System-Level Structures:

Uniformity of program and data has non-trivial implications for program building when con-

sidered in the context of a semantics that defines a non-strict evaluation strategy. For example,

it is possible to express programs that turn into conventional data structures when they are

complete: a program called AtimesB, for example, might be a rectangular map whose i,jth

element is an invocation of the function InnerProduct on the it h row of A and jth column of B;

more complex "active data structure" programs might have certain elements that block pending

the completion of other elements. It is thus possible to encompass the kind of programming

style that eager, non-strict, parallel programming languages[26, 40, 53] support.

As a concrete example, consider the following situation: the user wants to run many test cases

of a program Q concurrently; he wants to analyze the results of each using an analysis program

analyze; whenever an analysis turns up a "best result so far", he wants the results entered in a

best-results directory and a message printed to the terminal screen. Moreover, if Q and analyze

are compute-intensive, it becomes desirable to have Q's and analyze's internal structure be as

parallel as possible; we would like to constrain parallelism only when the logical dependency

constraints of the program would be violated.

Some of the requirements imposed by this example can be handled easily enough with the help

of a conventional operating system. Q and analyze can be implemented as separate program
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units that are assembled dynamically in the style of piped-together routines in a Unix shell

script. The best-results directory can also be created and maintained under the aegis of the

operating system. The internal parallelism required to implement Q and analyze would, of

course, have to be supported by the source language.

In most systems, however, there is a sharp distinction between the facilities provided by the

language proper and that provided by the operating system4 . Languages rarely allow loosely-

knit computation ensembles (like Q and analyze) to coalesce and interact in the same way

that closely-knit program units are allowed to. In a symmetric language, on the other hand,

distinctions between the operating system domain and the programming language domain are

blurred. First-class naming environments can be made to serve as file-systems; independently

conceived program units can be dynamically assembled by enclosing them within a single map;

the manner in which two elements in a single map relate to one another is similar to the way

in which two program units found within a large directory relate.

Uniformity of Data and Process:

Thinking about programs in terms of maps also enables the programmer to have a unified

framework for dealing not only with programs as objects but also with evaluating programs as

processes. The same structure that is used to store the fields of a record or the elements of

an array can also be used for the components of a computation in progress, as we illustrated

above, simply because the top-level source program itself is represented as such a map, and the

structure of this map is preserved during evaluation. An ongoing computation is a data object

with all the power of maps generally.

Because a program is simply a data object, one can nest programs within other programs in the

same way that one can nest data structures within other data structures. The internal structure

of a nested program can be examined even if it is still in mid-evaluation. Viewing programs

as transparent data objects encourages an interesting program methodology not supported by

other programming models. For example, one can write a program essentially unencumbered

by calls to i/o routines. Programmers are free to drape this program with routines that monitor

its evaluation (since it is, after all, just a data object) and format and display results as they

4Monolingual workstations like Lisp machines[39] are an exception. But, even in such systems, the object
specified by the file-system has no truly meaningful interpretation in the context of conventional lisp data
structures.
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see fit. Many different display routines can be written for the same program; the original core

is left untouched.

As an example of where such a programming paradigm would be useful, consider an expert

system that continuously monitors and filters information gathered from a large number of

independent data streams. Internally, such a program might be organized as a collection of

concurrently executing processes that communicate with one another via different data streams.

Externally, we would like to treat the program as a large dynamic record whose individual fields

represent independent decision nodes. We should like to be able to monitor the state of a given

node or retrieve the contents of a particular data stream dynamically and from the outside

without having to alter the structure of the program.

A symmetric language allows expert systems of this sort to be built using maps. Here again,

the uniform structure of program structures and data structures enables the programmer to

have different views of the same structure (internally, as a collection of processes; externally, as

a large record-like object) as suits his convenience.

1.4 Symmetric Lisp

Symmetric Lisp is a programming language that directly supports the programming model

described above. A detailed informal description is given in Chapter 2 and a formal semantics

is provided in Chapter 3; what follows below is a summary of its fundamental features:

1. The only program and data constructor in the language is a map. A map defines a
program structure because (a) it is an object that specifies a computation and (b) because
the names it defines are used in the evaluation of other expressions. A map defines a data
structure because (a) it allows its components to be selected by name as well as position
and (b) because it may be treated as an aggregate structure. Map structures are always
shared among expressions, never copied.

Map evaluation is non-strict: the components of a map may be selected even as other
components in the same map continue to evaluate. All expressions within a map evalu-
ate concurrently subject only to basic data dependencies. It is possible to serialize the
behaviour of map expressions by using a variant of the basic map constructor5 .

2. The language supports the definition and use of first-class naming environments. Because
maps may be nested inside other maps and may be bound to names, environments may be

Sserialize is not used here in the traditional database sense[30]; it is used to simply mean that within a
"serialized" map, a left-to-right evaluation semantics of expressions is obeyed. The regions found in a regular
map, in contrast, are not evaluated in any particular order.
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yielded and treated as values. Symmetric Lisp allows the programmer to specify explicitly
the naming environment within which an expression should evaluate; the meaning of any
names not defined by the expression are retrieved from the user-specified environment.
The meaning of names found in an expression that is evaluated in the context of a specified
map is the value to which these names are bound in the containing their definition.

One can layer maps; the effect of such an operation is to have bindings of names found
in one map supersede those defined in the other. One can also project names onto an
environment; projecting a name n onto an environment M results in a new environment
that contains n's binding in M.

3. There are operations to abstract over environments and expressions to create functions.
Symmetric Lisp supports first-class, higher-order lexically-scoped functions. Environment
and function abstraction axe primitive operations in the language, but the application rules
for abstracted expressions are defined in terms of map instantiation and selection.

4. Regions in a map may be left empty. An empty region or hole may be subsequently filled
in by another map expression. Any expression that attempts to access a hole suspends,
as per the normal evaluation rule, until a value is produced for that hole.

5. Regions are assignable. Assigning to a region only changes the contents of the region and
not the name bound to that region. All assignment operations are atomic; simultaneous
assignments to the same variable take place in arbitrary order.

1.5 Background

The symmetric programming model is the outgrowth of an investigation into the underlying

similarities that exist among many superfically diverse programming methodologies. In this

section, the symmetric model (and Symmetric Lisp) is compared with other related models and

languages. The discussion of related models falls into two broad categories: (1) programming

models that address the issue of program/data uniformity and (2) programming models that

are based on a parallel evaluation semantics.

1.5.1 Programming Models

1.5.1.1 Programs as Objects

The object-oriented programming model[4, 38] is characterized by its treatment of both program

and data as objects that retain local state information. Programs are conceived as a collection

of objects that communicate by message-passing. In many ways, the symmetric model is the

logical inverse of the object-oriented model. Every data structure in an object-based model is
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treated as a program whose internal state is only accessible via the methods defined for the

object; in contrast, a symmetric language program is a data structure whose elements may be

accessed directly without requiring any intervening method invocation.

Uniformity of program and data in the object-oriented model is achieved by transforming every

data object into a program; uniformity in the symmetric model is achieved by transforming every

program structure into a data object. Modularity in an object-oriented program is achieved by

encapsulating information inside objects and using inheritance relations among objects to share

common information; modularity in a symmetric language program is achieved by collecting

related information into maps and allowing larger maps to be synthesized out of smaller ones

by permitting arbitrary nesting of map structures.

The methodology imposed by object-based languages is based on encapsulation; decisions about

what to do with messages and instance variables are determined statically by the class definition

of the object. The methodology encouraged by a symmetric language is based on program

transparency; decisions about what to do with data and program can be determined dynamically

by expressions found outside of the object. As a program evolves, one can treat the objects

it defines in different ways; the same program may have different routines operating on it in

different ways, e.g., displaying its internal state in diverse formats, etc.

Which approach is better? There are advantages as well as disadvantages to both programming

methodologies. Several of the applications considered in this thesis, however, (e.g., monolingual

programming environments or dynamically evolving expert systems), crucially depend on pro-

gram transparency; encapsulation of the kind encouraged by conventional object-based systems

would be a hindrance in the development of such programs. On the other hand, it cannot be

denied that encapsulation and abstraction serve a useful role in the construction and mainte-

nance of large programs; we discuss how one might implement a simple form of data abstraction

in the context of Symmetric Lisp later in the thesis.

1.5.1.2 Procedures as Data - Comparison with Lisp

Classical Lisp[48, 54] has been altered and extended in many ways. Scheme and its dialects[l, 31]

are alterations designed to support higher-order functions and continuations. Common Lisp[57],

among other things, provides modularity aids through the package structure. CommonLoops[14]
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and Flavors[39] are extensions for object-oriented programming. 3-Lisp[56] and Brown[67] are

dialects that focus on user control of the interpreter's internal state.

Symmetric Lisp addresses many of these issues, albeit in a significantly different way; it departs

from all these Lisps in its insistence on a uniform naming discipline for both programs and

data. Lisp maintains a distinction between the names defined in program structures such as

procedures or environments, and names found in data structures such as lists or alists. A Lisp

procedure or a Scheme environment defines a collection of program-structure names - names

that can be used to affect the evaluation of other expressions, i.e., names that can be evaluated

to yield their binding values. The names found in a Lisp data structure such as an alist or

property-list, on the other hand, cannot be evaluated. The name-value pairs found in an alist

do not have the semantics normally associated with a naming environment - they cannot be

used to affect the evaluation of other expressions (since they do not define a scope) nor can

they be handed to the interpreter for evaluation. In Symmetric Lisp, there is only one kind of

name and only one way to associate a name with an object. Every name, whether found in

maps used as data or in maps used as programs, has a value.

Scheme and First-Class Environments: In MIT Scheme[l], users are allowed to build customized

environment structures through the make-environment special-form. Make-environment con-

structs an environment object, evaluates a sequence of expressions within this environment,

and returns the new environment as its result. The define special form installs a binding

within the environment in which it is evaluated; users access bindings defined in a particular

environment by passing the environment as the second argument to the primitive oval operator.

Thus, given an environment, E, containing definitions x and y, the expression: (oval I (x y) E)

evaluates the application (x y) in the context of E.

The make-environment construct makes it possible for Scheme programmers to define local

namespaces that encapsulate a related collection of data and procedures within a structure sim-

ilar to the map objects constructible in Symmetric Lisp. Note that because make-environment

yields a value (an environment object) which can be bound to other names, one can nest envi-

ronments to any depth. Since environments can be bound to names and are bona-fide objects

in the language, they may be built into data structures or they may be passed as arguments

to, and returned as results from, procedures.

Given that Scheme provides a mechanism for building first-class environments, one is led to
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ask how these environment structures are different from Symmetric Lisp maps. Outside of

the obvious difference between Scheme's strict, sequential evaluation semantics and Symmetric

Lisp's non-strict, parallel one, Symmetric Lisp's implementation of naming environments differs

from Scheme's in one other important way: Symmetric Lisp provides transparent access to the

environment structures built by map evaluation; Scheme does not provide transparent access

to its user-defined environments. Transparency means that the Symmetric Lisp map has a

well-defined notation in the language; the Scheme environment object does not. To access the

elements of a Scheme environment one must either evaluate the name whose binding-value is

sought using the oval function or coerce the environment structure into a list or alist object.

A Symmetric Lisp environment defined by map evaluation requires no coercion in order to be

examined.

3-Lisp, Brown, and Reflection: Smith has proposed a dialect of Scheme called 3-Lisp that allows

the hidden store, environment and continuation structures found in a Lisp interpreter to be made

visible for explicit manipulation and inspection within Lisp itself. The reflective metaphor

suggests an infinite tower of interpreters: the lowest level representing the interpreter that

interprets user programs, the level above it representing the interpreter that has access to

the structures used by the level 0 interpreter, and so on ad infinitum. Friedman and Wand

have proposed a less metaphysical version of Smith's model that does not depend on a tower

of interpreters; their language, Brown, requires only two levels of interpretation - the base

interpreter and a reified interpreter that has access to the store, environment and continuation

of the lower level.

It may be argued that any language is potentially "reflective": a Pascal debugger written in

Pascal, for example, acts in much the same way as a level one reflective Lisp interpreter that

has direct access to the structure of the level 0 interpreter. Unlike a Pascal interpreter and its

associated debugger, however, the ability to move freely between different interpreter levels in

a reflective language makes it practically impossible to compile reflective programs; evaluating

such a program essentially requires keeping the compiler resident at runtime to perform dynamic

code-generation whenever a reifying operation is executed.

Even though Symmetric Lisp permits the free use of map structures, the behaviour of the

underlying interpreter is fixed - one cannot alter the name lookup process or the semantics of

map construction (as is possible in a reflective language). The underlying structures that define
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the Symmetric Lisp interpreter are inaccessible to the user.

On the other hand, the reflective languages of Smith or Friedman and Wand do not allow

users to express first-class transparent environments (as is possible in a symmetric language).

Environments in these languages are first-class but only insofar as they can be examined by a

higher-level interpreter - user expressions cannot examine them nor can they be accessed from

within the same level as they are defined. In other words, the distinction between an object

that can be examined and an active program is still strictly maintained even in these reflective

languages.

1.5.1.3 Pebble

Pebble[151 is a kernel language designed to support the construction and maintenance of large

programs in a semantically clean and modular way. It does so by providing a semantics for

data types, abstract data types and modules within the framework of the second-order lambda

calculus. Among its many interesting features (e.g., dependent types, polymorphism, types as

values, etc.), Pebble also treats bindings (and naming environments) as values.

A Pebble binding x-3 binds the value of the name x to 3. The role of bindings in Pebble is

to provide a basis for a semantics of modules given in terms of functions that map bindings

to bindings. Pebble modules are treated as functions that map environments containing the

bindings of module interfaces to environments containing the operations the module defines.

Because Symmetric Lisp maps are first-class environments, they can be used to implement

Pebble-style modules8 . Pebble bindings and declarations, however, are not data structures in

the Symmetric Lisp sense - they cannot be selected out of the environment in which they are

defined nor can the user iterate over the bindings declared within them.

1.5.2 Parallelism

1.5.2.1 Expression-Level Parallelism

The parallel evaluation semantics of Symmetric Lisp maps is similar to the fine-grained parallel

evaluation semantics most commonly found in functional languages[12, 43]. All map elements

6Pebble modules are also strongly-typed. We discuss a type-inference algorithm for Symmetric Lisp in Chap-
ter 6.
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evaluate concurrently unless otherwise constrained by data or control dependencies.

Symmetric Lisp's non-strict evaluation semantics is also similar to the evaluation semantics

found in non-strict, lenient languages such as VimVal[26] or Id[53] and distinguishes it from

non-strict, lazy languages such as Miranda[65] or SASL[66].

1.5.2.2 Explicitly Parallel Languages

Programs written in explicitly parallel languages are structured as a collection of communicat-

ing sequential processes with inter-process communication patterns explicitly specified by the

programmer. Because Symmetric Lisp maps serve the role of both program and data struc-

ture, they can be used to implement shared resource managers that may be accessed by many

concurrently evaluating processes executing within other maps.

A symmetric language map acts as a distributed data structure - its components may be se-

lected and examined by many processes simultaneously. Most explicitly, parallel languages

(e.g., Ada[3], CSP[42] or Qlisp[34]) do not provide direct support for this kind of structure.

Instead, they provide manager or monitor processes, such as an Ada entry procedure, a Qlisp

process-closure or a CSP-Occam output statement. The consumer calls the manager to request

or to update some item and the manager returns the item or updates it as requested; the con-

sumer waits until the request is satisfied. Remote procedure call schemes require an extra and

logically unnecessary inter-process transaction, between the consumer and manager, compared

to distributed data structure schemes.

Among explicitly parallel languages, Symmetric Lisp is most closely related to Linda[3b]. Linda

processes communicate via a globally-shared collection of ordered tuples called a tuple-space.

There are operations to add, remove, and read tuples from this space. k tuple is a distributed

structure; once added into tuple space, any process that wishes to read it may do so. If no tuple

is available, the process suspends until one is, then proceeds. Tuples may be added to tuple-

space even if unevaluated; such tuples are Linda's counterpart to Symmetric Lisp's non-strict

map structures. Even though the evaluation semantics of Linda tuples match well with that of

Symmetric Lisp's maps, Linda is based on a very different programming model. Linda tuples

do not define naming environments. Al tuples reside in a flat namespace and Linda program

structures, unlike Symmetric Lisp programs represented as maps, are not represented as tuples
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of a particular structure. Linda processes reside in a namespace different from the tuple-space

that they build and access.

MultiLisp(40] is a parallel language derived from Scheme by the addition of a special non-strict

constructor called a future7. The expression, (future X) where X is an arbitrary expression,

creates a task to evaluate X and also creates an object known as a future to hold the value

of X eventually. The result of a future expression is the future object; any expression that

attempts to read the value before it is produced blocks until it becomes available. In this sense,

futures are similar to early-completion structures implemented in VimVal and are a restricted

form of I-structures[7] found in Id or empty regions constructible in Symmetric Lisp. Insofar

as parallelism is concerned, a Symmetric Lisp map could presumably be implemented as a

MultiLisp letree expression in which each binding expression is wrapped inside its own future.

A letrec doesn't define a data structure, though, and such a transformation would need to be

greatly extended if it were to be faithful to the semantics of map evaluation as dictated by the

symmetric programming model.

1.6 Overview of the Thesis

Chapter 2 begins with an informal description of Symmetric Lisp and presents simple examples

of map expressions and how they may be built and used. Chapter 3 presents a formal operational

semantics of the language using Plotkin-style rewrite rules.

Chapter 4 gives examples of how to express program and data constructs found in many di-

verse existing languages in Symmetric Lisp. The main goal in this chapter is to show that the

symmetric programming model is a good thought-tool for reasoning about programs as data

objects and, conversely, for reasoning about data objects as processes. The chapter begins by

showing how to implement common program structures found in existing languages - local

naming blocks, cobegin-coend statements, lazy structures, Simula and Smaltalk classes, inheri-

tance, etc. - purely in terms of selection and definition of Symmetric Lisp map structures. Some

new program structures are also developed that are not easily supported in other languages.

These include parallel knowledge daemons and programs based on dynamic process streams.

The realization of these programs crucially depend on the uniformity of program and data and

7 Note that Qlisp also supports futures.
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the ability to examine programs (or processes) as they are under evaluation. The latter part

of the chapter discusses the use of maps as distributed data structures and the role of empty

regions as an explicit synchronization device. Examples of a mutually-recursive stream pro-

gram, a dataflow-based simulator and resource managers[5 ] are given to illustrate the utility

of a symmetric language in expressing concurrency. All the example programs given in this

chapter have been tested using a logically concurrent interpreter for the language implemented

in Common Lisp on a TI-Explorer.

Chapter 5 discusses the Symmetric Lisp programming environment. First-class parallel environ-

ments make Symmetric Lisp suitable as a base language for a monolingual, parallel language-

based computer system. The structure of a simple file-system written in Symmetric Lisp is

sketched and some examples of daemon processes that can watch environments or streams for

interesting developments are given. These daemon processes can be written and installed in a

user's environment directly; no interaction with system-supplied utilities is necessary.

The viability of any Symmetric Lisp implementation depends on how effectively the compiler can

translate symbolic name references to target language addresses. The problem is an important

one in Symmetric Lisp because the evaluation environment of any expression can be dynamically

altered by enclosing it within a user-specified environment structure. Chapter 6 shows how this

problem can be solved using abstract interpretation; by making the "type" of an expression

contain information about the names it defines and uses, it is shown how a compiler can infer

the proper evaluation environment of an expression.

The fine grained parallel evaluation semantics of maps coupled with the model's block-on-

uncomputed-regions rule makes Symmetric Lisp suitable for implementation on a general pur-

pose dataflow machine. In Chapter 7, we present a source-to-source translation of Symmetric

Lisp programs into the high-level dataflow programming language Id[53]. Given a translation

scheme from Id into the base language representation of dataflow graphs, it becomes straight-

forward to understand how Symmetric Lisp programs might be represented as dataflow graphs

and implemented on a dataflow machine. We do not undertake a discussion of architectural

issues such as resource management, code mapping, etc., since these issues pertain to dataflow

systems in general, and are not specific to any particular Symmetric Lisp implementation.

Chapter 8 gives conclusions.
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Chapter 2

Symmetric Lisp

The last chapter presented an abstract description of the symmetric programming model. In

this chapter, we make the abstract description concrete by informally presenting the syntax and

semantics of Symmetric Lisp. We give some simple examples of Symmetric Lisp programs and

describe the mechanism by which maps axe constructed and manipulated. In Section 2.2, we

use the operators defined in the earlier parts of the chapter to build an important abstraction

(called an open-map) that is used extensively in later chapters of the thesis.

There are two appendices. The first gives a quick reference guide to the operators and terms

defined in the chapter; the second presents a formal BNF description of the grammar.

2.1 Description of the Language

Expressions in Symmetric Lisp, for the most part, follow Common Lisp syntax. (The main

exceptions are name-binding expressions and various selection operations.) The language sup-

ports all standard arithmetic, boolean, conditional and string operations found in Common

Lisp.

2.1.1 The Program Structure

A Symmetric Lisp program is an unevaluated map form which, upon evaluation, becomes a map

value; a map value, in other words, is a map expression in normal form. A map form is not an

expression that yields another map as result. Maps have spatial identity - they are evaluated

in place, without copying, and when fully evaluated become map values.

27
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A map consists of a number of expressions called regions. Each expression may have a name;

an expression with a name is referred to as a named expression. Giving a name (which must be

a symbol) to an expression binds the name to the result yielded by the expression; this binding

is visible to any expression which has access to the map. A binding is written as:

name : e

This binding associates name with the value which expression a denotes. Within a given map,

all names must be unique.

2.1.2 The Map Evaluation Rule

A map expression is evaluated in two steps. First, all region-defining names are recorded as

elements of the environment to be defined by this map. After this step, the map structure is

accessible to any expression that requires it. Its evaluation is only complete, however, when

all expressions in all of its regions have been evaluated. These expressions are evaluated si-

multaneously; if an expression requires the value of some binding and that value is still being

computed, evaluation of the expression blocks until the required value becomes available. The

kth element of an evaluated map holds the result yielded by evaluation of the kth expression in

the original. A named element in the original retains the same name in the evaluated version.

Thus, the map expression

(map
X (+ 11)
y (+ X 10)
(+ y 10))

defines a three-region map; the first region is named x and contains the expression (+ 1 1).

The second region in the map is named y and contains the expression (+ x 10). The third

region is unnamed and contains the expression (+ y 10).

This map, when evaluated, becomes

(map
x :2

y 12
22)

It's natural to allow access to maps before they are fully evaluated, because their structure

is known by the end of the evaluation phase in which names are established. Both this non-
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Y: 3

9: 4

: w

Figure 2 : Structure of a Map

strict access rule and the synchronization-on-uncomputed-values rule resemble procedures that

govern functional data structures implemented using early-completion structures[26].

Every map has an associated unique system-provided address. The apply-env operator returns

the address associated with the map within which it is evaluated'.

A map defines a local lexical scope to which the expressions within it refer during their evalu-

ation. Thus, when

(map
y :3
z :4

(map

x (map
(+ z Y))

y : 2)

Y)

is evaluated, it becomes

(map
y:3

z :4

(map
x : (map 6)
y :2)

3)

Figure 2 shows the representation of this map object.

'Such an operator is implemented in some object-oriented languages as a special variable called self[38] or
this[23].
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In the above example, references to z and y made during the evaluation of the + operation get

resolved by first looking for bindings for these names in the current map, (which defines no

bindings), then in the map in which this map resides (which defines a binding for y) and then

in the map in which this enclosing map resides (which defines a binding for z).

Every expression has an associated evaluation environment that specifies where it should re-

trieve its free names. Although the terms "map" and "environment" are used interchangeably

throughout the thesis, the usage is actually a bit imprecise: a free-standing Symmetric Lisp

map is simply a frame of bindings and values. The name-lookup rule described above captures

the notion of an evaluation and naming environment, but is meaningful only when the expres-

sions found in map regions are evaluated relative to their lexically enclosing environment. The

interpreter maintains the information regarding the evaluation environment of expressions.

One can ask for the number of elements in a given map using the msize function - (maize M)

returns the number of regions in map M.

2.1.2.1 Constraining Evaluation Order

All elements of a regular map evaluate in parallel with no pre-specified evaluation order. Ele-

ments of a seqmap (sequential map), on the other hand, evaluate in a particular order starting

with the first (leftmost) region and proceeding to the right. After all elements in the first re-

gion have finished evaluating, the evaluation of elements in the next region can begin. A fully

evaluated seqmap is identical to a regular map; the result of a seqmap evaluation is an ordinary

map value.

One can define name bindings in a seqmap. All names declared within a seqmap are defined

simultaneously, before the evaluation of the first element commences. Since all the names

found in a seqmap are known before expression evaluation actually begins, mutually recursive

expressions or forward references occuring in a seqmap may lead to deadlock. Consider, for

example, the following fragment:

(seqmap
X : Y

y : (+ 2 3))

Both x and y are recorded as part of the environment defined by the seqmap before the evalu-

ation of the first expression begins. Because of the serial evaluation rule, however, the binding
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of name y to 1 will never be installed because the expression y in the binding, "x y" must

first resolve to a value; since the expression responsible for producing this value, y (+ 2 3),

can execute only after the first expression terminates, a deadlock situation exists.

What does it mean for an element to "finish evaluating"? Informally, an element in region r is

said to have finished evaluating if outside expressions do not block in attempting to access r's

contents. Thus, if an element is a primitive expression such as an arithmetic operation found

in region r, evaluation of region r + 1 can begin only after the operation yields a value. The

tricky part in defining what we mean by "finish" has to do with reconciling this term with

the non-strict evaluation rule for maps. We said earlier that a map is available for inspection

once all the names it declares have been recorded as part of its evaluation environment. We

did not require that all subexpressions found in the map evaluate to values before the map

can be accessed. Although the map expression (in a sense) has finished evaluating (insofar as

the names it defines have been recorded and an internal representation of it has been created

by the interpreter), evaluation of its subexpressions need not have completed. This non-strict

evaluation rule means that a map expression that happens to be the ith element in a seqmap

can have its elements still evaluate in parallel with the seqmap's i + 1 8t element; the seqmap

construct does evaluate elements in a particular order, but does not ensure that its elements

evaluate sequentially if some of them have a non-strict evaluation semantics.

The following definitions make this informal description precise:

Definition 2.1 A value is either a constant (e.g., an integer, boolean, string or function) or a
map all of whose elements are values. An object is either a constant or a map for which an
internal representation exists.

Definition 2.2 An exprcssion e has finished evaluating when it yields an object as its result.

This weak constraint on evaluation order implies that the deadlock situation illustrated above

may be avoided through the judicious use of map expressions; the above example would not

deadlock if the first binding were instead written:

x : (map y)

(Note that this transformation is valid only if no other expression accesses x.) In the presence

of side-effecting operations, seqmap elements that execute after a map expression may interfere

with the evaluation of component expressions in that map. The potential for interference
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between successive seqmap elements prohibits one from asserting that a seqmap simply mimics

a sequential interpretation of a regular map.

Consider the following program fragment:

(seqmap

(map

(set x 1) ;;; set is an assignment operator

(sot z 2))

Evaluating this expression first causes the names z and f to be recorded as part of the evaluation

environment for the seqmap. After the constant 0 is bound to z, the map expression associated

with f is evaluated. Because maps are non-strict, it is not possible to determine the order in

which the multiple assignments to z found in the program take place. Unlike a serial execution

semantics that would order the evaluation of the map expression containing the assignment

(set x i) with the evaluation of the second assignment (set z 2), the semantics of seqmap

makes it possible to interleave the second assignment with the evaluation of other elements in

the inner map. Since it is not possible to guarantee the absence of any overlap in the execution

of the map bound to f and the last assignment operation, expressions in a seqmap are not

serializable in the database sense[30]. The main purpose of the seqmap constructor is to ensure

that some strict operations (e.g., assignment) take place before other strict (or non-strict)

operations. Explicit locking mechanisms axe used to implement true serializable execution;

these locks prevent evaluating expressions from observing or interfering with the intermediate

states of a shared object being manipulated by another activity. The means by which locks are

built is described in Section 2.1.4.

2.1.3 Fixing the Evaluation Environment

Environments, being first-class objects, may be bound to names. If an environment is bound

to a name Q - Q: (map ... ) - one can evaluate an expression E using the names defined in Q

by writing (with Q E); such an expression is referred to as a scope-expression, Q is referred to as

an environment-specifier and E is known as the scope-body.

Suppose that q is the following map:

Q : (map R1 R2 ... Rn)
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To evaluate the above scope-expression, the interpreter evaluates E consulting the bindings

defined by Q for the meaning of any free name it encounters. If a free name occurring in the

body is bound to a region in Q, the name acquires the value of that region. Free names in E

not bound in any of Q's regions are looked up within the map immediately enclosing the with

expression and so on, as per the normal evaluation rules. (Although the notion of a free name

should be clear to the reader, a precise definition is given on page 59.)

The map object yielded by the environment-specifier is viewed as a naming environment. The

bindings defined in each named region of the map contribute to this environment; a map defines

a naming environment that associates every named region in the map with the value of the

region to which that name is bound.

Symmetric Lisp follows a Lisp-like call-by-sharing policy - maps are shared (not copied) among

the expressions that access them while scalars are copied and not shared. Thus, the evaluation

of q in the above with expression returns a reference to (not a new copy of) the map to which

q is bound; E can, therefore, cause side-effects in Q. Note that it is not necessary for Q to be a

simple name - any expression which yields a map as its result is acceptable as the first argument

to the with form.

The value yielded by E is returned as the value of the with form. Thus,

(map
y:2

Q (map y i)
(with Q (+ x y)))

becomes

(map

y:2

z:3
Q : (map y : 1)
4)

Q.E is an abbreviation for the expression

(with Q E)

The dot abbreviation is right-associative: Q.R.E is an abbreviation for

(with Q (with R E))



34 CHAPTER 2. SYMMETRIC LISP

It is sometimes useful to restrict the visibility of names defined in a map especially if the map's

name-bindings can be made visible to expressions not necessarily defined within it (as is possible

using the with form). The binding:

priv name : a

when evaluated in map N hides name from any expression that uses M. In other words, name is only

visible to expressions defined within N and to the expressions found in sub-maps directly enclosed

by N; if N is used as the source environment in a with expression, name is not made visible to the

expression enclosed by the with. A discussion of how to use this style of information-hiding to

implement a simple form of data abstraction is given in Chapter 4.

2.1.4 Locking an Environment

Because maps have the behaviour of ordinary data structures, it is useful to think of them as

objects whose elements may be seized by an evaluating expression and released when the ex-

pression finishes. By allowing expressions to gain exclusive access to an environment's elements,

one can build programs in which concurrently executing expressions do exhibit serializable be-

haviour - a feature not captured by the semantics of seqmap.

A lock is a special constant. A binding,

x : lock

defines x to be a lock; the value of x is the keyword lock. The only operation one can perform

on a lock is to seize it.

The expression

(holding el e2 )

first evaluates expression el to yield a lock object I. If no other expression currently holds 1,

then the lock is given to e2. Once a lock is obtained, evaluation of e2 proceeds as normal. Any

other expression that executes a holding operation using I blocks until e2 yields a value; once

e2 completes, the lock is released 2 . The value of the holding expression is the value yielded by

e2 . If, because of the evaluation of another holding expression, lock 1 has already been seized

2This means that if e2 is a map expression, the lock is released only when all of e2's elements become values.
This restriction is severe but necessary in order to provide serializability. If e2 were a map expression, and the
lock was released as soon as e2 became a map object, we cannot rule out the possibility of interference between an
assignment performed by an sub-expression of e2 on the structure protected by el and other outside concurrently
executing assignments.
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by some other expression, e2 blocks until that expression finishes and the lock is released. If

there are several expressions waiting for the same lock, the expression which gets the lock next

is chosen arbitrarily. The implementation is guaranteed to be starvation-free insofar as all

expressions waiting for a lock ultimately get it assuming that the lock is eventually released by

every expression which seizes it.

If K is the map

(map
incr lock
val 0)

then the expression,

(holding K.incr (set M.val (1+ .val)))

first seizes the lock bound to incr and subsequently increments the value of val. Assuming that

all expressions accessing this map obey the discipline of acquiring the lock before updating val,

this map could be used as an atomic counter. (The assignment evaluates its first argument to

get an address and replaces its contents of the address with the value yielded by evaluation of

its second argument.)

As in any concurrent system implementing locks, great care must be taken to avoid entering

into deadlock situations. Consider the following fragment:

(map
x (+ (holding Q.a y) (holding R.b e2))
y (+ (holding Q.a e3) (holding R.b x)))

where environment Q defines lock a and environment R defines lock b. Suppose that the first

expression acquires lock a and the second expression acquires lock b. Lock a will not be released

until y becomes bound to a value, but y cannot become bound to a value until lock a is released.

Note that locks prevent both readers as well writers from accessing the map. Excessive use of

locks may, therefore, significantly reduce concurrency. Symmetric Lisp encourages a functional

programming style; locks should be used sparingly, and only in cases where a shared resource

must be updated.

2.1.5 Selection

Three kinds of selection are possible over maps. One can ask for arbitrary sub-maps of a given

map either by selecting a subset of the elements of a map by name, or by selecting a subset
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of the elements defined in a map by position, or by asking for the value of the last region in

a map. select implements the first, index implements the second and mlast implements the

third.

select is a special form that, given a map, K, and a collection of names, n1 , n2 , ... , nk, returns

a k-element map that contains a binding for each of the k names; the binding-value for the
ith name is the value of the region to which this name is bound in X. Any argument name not

found in the specified map is bound to a special error value, error; the value of any expression

which accesses an error element or contains an error element is also error3 .

Thus if Q is the map:

(map
too v1
bar V2

ba: v3 )

then (select Q too bar ban) returns:

(map
too V
bar V2

ba: v3 )

Because of Symmetric Lisp's call-by-sharing semantics, if v, in the original map itself references

a map structure, the name foo in the map returned by the select expression is bound to the

same environment address. Thus, any change to made to the map referred to by v, made

in Q will be visible in the projected map and vise-versa. Because scalar values do not have

environment addresses, original and projected maps never share scalars.

(Note that the order of the name arguments in the call are significant - (select Q foo baa) is

not the same as (select Q bas too) since elements in the projected maps can be selected by

position as well as by name.)

index is a special form that given a map and a collection of indices returns a new map containing

the contents of the regions associated with those indices in the region that the indices denote.

Thus, given Q above, (index Q 1 2) yields:

(map

3Once a name is bound to error, it cannot be subsequently changed (via set) to a non-error value. This
approach to propagating error values throughout a program is similar to the method of error handling found in
some dataflow languages[70].
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V1
V2)

If an argument index is given that is greater than the number of regions in the map (or less

than 1), it is an error.

Argument indices may be any expression that evaluates to an integer. Like select, the non-

scalar elements of the map returned by index are shared with the map from which they were

extracted.

Finally, one can ask for the value of the last region of a map using the mlast operator. Thus,

(mlast Q) yields v3 . If Q is an empty map, miaat returns error. Note that miast cannot be

implemented just in terms of index and msize since index always returns a map; index cannot

be used to just extract an element from a map.

Given mlast and the two projection operators, one can define arbitrarily complex selector

functions. For example, one can define the Symmetric Lisp equivalent of the Lisp aref function,

mnth on M as follows:

(mlast ( index N i))

for some map N and integer-expression i4 . It is convenient to use the abbreviated notation, M[i]

to denote the above expression; in general, the expression M[ij, ... .k] is shorthand for:

(mnth ... (mnth (math M i) j) ... k)

The ability to extract elements of a map by position or name undermines to some degree the

protection afforded by priv bindings; even if a name is defined to be private, one can access the

contents of the region to which it is bound via appropriate selector operators. Symmetric Lisp

does not impose visibility constraints on regions, but only on names: ensuring that a region

bound to a priv name is not accessed by its position in the map is the responsibility of the

user; Symmetric Lisp does not enforce such constraints.

2.1.6 Environment Abstractions

Symmetric Lisp programmers can abstract over environments or expressions to create functions.

Both kinds of abstraction are closely related, and can be thought of as simple mechanisms for

defining and manipulating maps of a specified structure. Environment abstractions a. described

here and procedural abstractions are discussed in the section following.

4The non-recursive definition of maps makes them more akin to arrays or vectors than lists.
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Symmetric Lisp allows the programmer to build environment-creating templates using the kappa

form. Applying a Symmetric Lisp kappa of k argument names to k actuals causes the evaluation

of a map in which each argument name is bound to the value yielded by evaluation of the

actual and whose last element is the body of the abstraction. Kappas are lexically-scoped:

their evaluation environment is fixed at the point of definition; evaluation of a kappa is immune

from the bindings defined in the apply-time environment. Kappas may be higher-order, i.e.,

they may be returned as the result of an application, built into maps, etc.

The kappa-application process works as follows. (Assume that free names in the kappa body

have been suitably translated to reference their binding in the kappa's define-time environment.)

The expression

((kappa (varl var 2 ... varn)
body)

expI exp2 ... epn)

expands to the map

(map < actuals>). (map < formals> body)

where (map <actuals>) is

(map
new-id: expl

new-id2 :XP2

neu-id: expn)

(the new-id's are new identifiers) and (map <formals> body) is

(map
Vaxl new-idl
var2 new-id 2

var,,: new-idn
body)

for the same new-id's used above. The bindings of a formal to the actual in the map generated

by kappa application may be declared private if the formal is prefixed in the kappa declaration

by priv. Thus, the definition

(kappa ((priv var) var 2 ) <body>)

declares the binding of var1 in the map generated by kappa application to be private.

This map is an ordinary Symmetric Lisp expression and is evaluated by the standard rules: the

e*p, are evaluated in parallel with the body of the kappa ; the scoping rules for maps and the
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semantics of with guarantee that evaluation of the expi won't pick up the bindings for the vari.

The value yielded by evaluation of this with expression is the map containing the bindings for

each of the formals whose element is the value of body.

(For brevity, this full expansion is omitted in subsequent examples; the values yielded by the

expi will be used directly in place of new-id, in the inner map.)

Although free names in a kappa are by default evaluated in the kappa's lexical environment, one

can explicitly evaluate a free name within the kappa's application environment by wrapping the

identifier inside a scope-expression whose source environment is the value of apply-env. The

expression:

(kappa (idl id2 ... idn)
... (apply-onv).free-name ... )

evaluates free-name in the kappa's application environment; unless other free names have their

evaluation environment similarly prefixed, they evaluate in the kappa's lexical environment.

Examples showing the use of apply-env are given in Chapters 4.

Kappas can be used as record generators, analogous to record types in Pascal or delstructs in

Common Lisp.

Thus, for example, one can write:

airship : (kappa (year maxapeed color))

If one now applies airship to arguments

goodyear-blimpi (airship 1947 16 "silver")

the map

goodyear-blimp1 (map
year : 1947

maxapeod : 16

color : "silver")

is returned. The expression goodyear-blimpl. color yields "silver". Kappa objects can also be

used to specify parameterized record types:

airship : (kappa (date color filled-with )
safe : (if (equal filled-with "hydrogen")

"hope"

"probably"))

The invocation
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hindenburg (airship 1938 "silver" "hydrogen")

yields

hindenburg (map

year : 1936
color : "silver"

filled-with : "hydrogen"
safe : "nope")

Other interesting uses of kappa structures are given in Chapter 4.

2.1.7 Procedural Abstractions

Functions in Symmetric Lisp are defined using lambda expressions. A lambda expression is

structurally identical to a kappa; like kappa objects, free names in a lambda's body are resolved

in the function's lexical environment. A lambda, like a kappa, may be higher-order: it may be

returned as the result of an application, built into maps, etc.

Applying a lambda of k arguments to k actuals causes the evaluation of a map that is identical

to the one given above in the kappa-application case, except for the addition of an mlast that

is wrapped around the entire expression.

Thus, given:

K : (kappa (x y) (+ x y))
L (lambda (x y) (+ x y))

(K 1 2) yields

(map

y: 2

3)

and (L 1 2) yields the slant of this map - namely 3. Note that the kappa and lambda bodies

are implicit maps; if they consist of n separate elements, these n appear as the last n of the

invocation map. We can express the expansion rule for lambda application as follows: if f is a

lambda form, then (f < args >) expands to:

(mi.ast (map <actuals>).(-ap <formals> body))

where <actuals> and <formals> are as defined in the kappa application case.

Note that
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(kappa (z y) (+ x y))

is not the same as

(lambda (x y)
(map

(+ X y)))

Because a map defines a recursive naming environment, the evaluation of expressions x and y

in the map defined in the body of the lambda would not terminate since they refer to the name

whose binding-value they define. The above kappa structure is,, in fact, equivalent to

(lambda (fl f2)
(map

x : i

y f2
(+ X y)))

where f1 and 12 axe fresh names.

Although there are a number of powerful map-combining forms in the language that can be

used to implement simple iteration, general iteration is expressed using tall-recursive functions;

there are no special iterative control structures in the language.

It is important to note the conceptual significance of describing the semantics of lambdas and

kappas in terms of map abstraction. The basic role of kappas and lambdas is to provide a means

by which names can be abstracted over maps. Because elements found within a map object may

be selected by position, function application in Symmetric Lisp follows trivially from the ability

to parameterize over maps - the ability to build a parameterized map via kappa application

and the ability to select an element out of any map makes it easy to describe the behaviour

of lambda application in terms of map instantiation and selection. Parameterized maps axe

fundamental to the function application process.

2.1.8 Building Layered Regions

To support both the inheritance of methods in object-style programming and the interpreter's

incremental top-level interface, it is important that we be able to supersede bindings in a map

in some way. To supersede a binding of a name x in a map M, we build a new map map N

with a region named z, and then "layer" this new map onto M. Layering a new map onto
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an old one causes any name defined in the old map but redefined in the new one to have its

old definition superseded by the new definition. Thus, if r is a region named x but M already

defines a region named z, layering N on top of M returns a map in which z's definition in

N supersedes its definition in M. If M does not define a region named x, a map is returned

which represents the append of M onto N. Thus, if M contained two regions y and z, the

map yielded by the layering operation would consist of regions r, y and z in that order. The

layering process may be repeated any number of times. Note that the regions in M and N

are themselves unaffected by the layering operation. Examples of layered regions are given in

Section 4.1.6.2 and Section 5.1.

The layer operator composes maps in this way. Let N be

(map m : A
m2 :MM2

and N be

(map n I N1
n2 :N 2

ni Nk)

Let X = {XI, X2,... , xi} be the set of names that are bound to regions occurring in both N and

I. Then, the expression

(layer K N)

yields the map:

(map L1 L 2 ... L L,.,+l ... Lj+A-i)

where

" for 1 < t < j, Lt is mi : Mi if Mi is a region not bound to a name in X and is mi:

(with M mi) if nk = mi.

" If Nj is the contents of the left-most region in N not bound to a name in X, then Lj+1

is the result of evaluating the expression nj: (with N ni), Li+ 2 is the contents of the

second left-most region in N not bound to a name in X and so on.
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Note that the skeleton of the layered map can be returned once the skeleton of the argument

maps are known; the value of the regions in the layered-map are determined once the corre-

sponding values in the argument maps become known; thus, layer can return a map object

even if expressions in its argument maps have not all finished evaluating.

For the purposes of the construction, unnamed regions in the argument maps can be thought

of as being bound to some unique name guaranteed not to be defined elsewhere.

Layer returns a new map and does not side-effect its arguments. Note that the map returned

by the layer operator causes binding-values for names defined in X to supersede the binding-

values for the same names defined in N; the order of the argument maps to layer is, therefore,

significant.

As per the semantics of scope-expressions, the map returned by layer shares its non-scalar

regions with its argument maps; scalar values are copied. The layer operation is associative:

(layer R (layer S T)) = (layer (layer R S) T)

Layer can be applied to a variable number of arguments; thus,

(layer M1 M 2 ... M,,) =_ (layer M1 (layer M 2 ... (layer M,-I M)))

Maps built from the layer operation can be used to act as changing namespaces; as layer opera-

tions are performed, the map's naming environment is changed correspondingly. Because of the

non-strict evaluation semantics of maps, we can treat the layering operation as constructing an

evaluation-site to which new name bindings may be added and old name bindings superseded.

The evaluation environment defined by a layered map is determined by the names defined in

the regions currently found within the map.

Suppose a map called K - K : (map) - is created and the followirng expression is then executed:

(map
N1 : (layer N (map foobar (* 2 3)))
X2 : (layer HI (map bazball (* 4 6))))

After all expressions have evaluated, Ni would look like:

(map foobar : 6)

and M2 would look like

(map
foobar 6
bazball : 20)
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N2 is a map whose first region contains a binding for foobar and whose second region contains

a binding for bazball; if we now execute:

(layer (map foobar : (* 3 4)) X2)

the value yielded is the map

(map

foobar 12

bazball 20)

The contents of the region named foobar supersedes the definition of foobar provided earlier.

Expressions evaluated in the context of this map will only see the new definition of foobar.

2.1.9 Map Generation

The simplest way of generating a map is to use the iota primitive function. The expression

(iota 1 n) for some positive integer n, returns an n-element map whose ith element is i.

Iota builds an integer map using its arguments as the map's lower and upper elements. It

is also possible to generate more complex maps from existing ones using the generate expres-

sion. Elements in the map built by generate are computed based on the region's value at the

corresponding index in the existing map. The expression:

(generate (e N)

body)

where X is a n-element map, returns a map, N, of the same dimensions as M in which the jth

element N is the result of evaluating body in an environment in which a is bound to the value

of the j" element in K. If we assume, for example, that K contains n elements, then the above

generator is equivalent to the following map expression:

(map
(map i : i]).body

(map i : X [2] ). body

(map i : 1C]).body)

Notice that the evaluation of all n elements in the generated map can proceed in parallel. Notice

also that if i is not free in body, the value of X[i] won't be used when body is evaluated.

The generate operator serves two main roles: first, it provides a way of applying a function

across an entire map structure non-recursively. For example, if we let (onto f N) where f is

some function and K is a map be equivalent to the expression:
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(generate (o K)

(f 6))

then onto applies f to each element in M in parallel and returns a map of the same dimension

containing the results of the application.

Thus, given a map:

V : (10 10 10 10 10)

the expression:

(onto (lambda (e) (* 3 a)) V)

specifies the computation:

(map (* 3 10) (* 3 10) (* 3 10) (* 3 10) (* 3 10))

which evaluates to a map containing five 30's. By the ordinary map evaluation rule, the inter-

mediate form calls for all five multiplications to be performed simultaneously. The evaluation of

the above onto expression behaves like operators typically found in data parallel languages[46].

The other role of generate has to do with its ability to define general recurrence relations over

map structures. Consider the following Id[53] array-comprehension expression that defines a

wavefront recurrence:

A = {matrix (1,1), (1,N)

I [1,1] z 1

I [i,1J = 1 II i <- 2 to I
I [1,j] = 1 11 j <- 2 to I

I [ij] = Aci-1,j] +
Ai-l,j-lJ +
A[ij-1J II i <- 2 to N

& j <- 2 to I}

An equivalent definition can be written in Symmetric Lisp using generators as follows:

A : (generate (i (iota 1 1))
(generate Cj (iota 1 N))

(cond ((and (= i 1) (= j 1)) 1)

((and (in? 1 2 1) (= j 1)) 1)
((and (in? j 2 N) C i 1)) 1)

((and (in? i 2 N) (in? j 2 N))
(+ AC(I- i),j] A[(1- i),(I- j)]

A[i,(I- j)])))))

The computation of all n 2 expressions proceeds in parallel; expressions requiring the value

of other elements in A block until a value is produced by the appropriate computation. The
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in? predicate returns true if its first argument lies between the bounds specified by its second

and third arguments. Compared to the Id solution, the Symmetric Lisp version is inefficent,

requiring N 2 conditional tests; because the array comprehension statement is implemented using

I-structures, it can be implemented using just I-structure array assignment - no conditional tests

are necessary. An equally efficient implementation in Symmetric Lisp is given in the next section

after a discussion of empty regions.

2.1.10 Empty Regions

A map with a hole has an empty or undefined region. A star (*) is used to denote an empty

region. Thus the map

(map *)

denotes a map with a single region whose contents are still unspecified. One can evaluate and

return a map with empty regions, but expressions which attempt to access such a region block

until the region has been filled with a value.

Empty regions can be filled using the fill operator. The fill expression has three basic forms:

1. (fill name ezp)

2. (fill map-exp.name exp)

3. (fill map-ezp[index] ezp)

Regardless of which form is used, fill ultimately operates on a map region and a value. In the

first form, the region is simply the region denoted by name in the lexical environment in which

the operator is evaluated. In the second form, fill evaluates map-exp to get a map object, M;

the region denoted by name in M is the region to be filled-in; if no binding for name is found in

any of the regions defined by M, an error is raised. The evaluation of the third form is similar

to the second except that instead of a name denoting a region, the third argument is an integer

expression that yields an index into M; it is an error if the computed index is greater than the

number of regions in M.

Fill obeys a partial unification-style semantics - if the contents of the region to be filled is

empty, fill simply drops the value yielded by evaluation of ezp into the region and returns the
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value. If the region is not empty, fill compares the value of exp with the region's contents:

5if they are both primitive values and equal, or if they both refer to the same map or region

fill simply returns the primitive value or the reference as appropriate. In any other case, fill

returns an error value.

Any expression that was previously suspended waiting for an empty region to be filled can

resume execution once a fill operation on that region completes. Thus, given:

: (map
:~ X W

• y (+ z 1))

the evaluation of the expression (fill ME1 1) causes I to be substituted for the empty region

currently bound to x6.

After the fill expression evaluates, the above program would turn into the following data

structure:

M : (map

y 2)

Given that maps can have arbitrarily many empty regions, one can build a map of unspecified

elements:

(generate (i (iota 1 n))

The resulting map is effectively an uninitialized array; expressions which attempt to access its

elements block until the corresponding fill operation (which plays the role of an array element

assignment here) executes. A map whose elements are either values or empty regions is still

considered a value. This is because there is no remaining internal computation to be performed

by any of the map's subexpressions; the fill operation is an intrusive operation: it alters the

map from the outside. This definition of map value some practical benefits as well as we discuss

in the next section.

Consider now a reformulation of the wavefront recurrence given in the last section. Using empty-

regions, one can devise a more efficient solution that avoids the need to includi conditional tests

in the body of the generate expression:

'Same in the Lisp eq sense: they must refer to the identical map object, i.e., the I-value of the objects to which
they refer must be the same. This restriction is a significant one and can hinder some important optimizations
like common subexpression elimination, but makes equality test very inexpensive (since the operation need only
compare two addresses for equality).

6 Note that one could have also written (fill N. x 1) to get the same effect
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A: (mlast
(map

(fill A[1,13 1)

(generate (i (iota 2 a))
(fill A[i,1] 1))

(generate (j (iota 2 n))

(fill AEl,j] 1))
(generate (i (iota 2 n))

(generate (j (iota 2 n))
(fill Ail,j] (+ A[(1- i),j] 1[(1- i),(1- j)]

A[i,(I- j)]))))

(generate (i (iota I n))
(generate (j (iota 1 n))

A nitially bound to an n x n map containing only empty regions. The generate expressions

preceding the last expression in the map that defines A's structure are used to fill in the appro-

priate entries in the matrix. All the generate expressions execute simultaneously; expressions

in a generate clause that require other values of A block until the referenced regions are filled

in by the appropriate fill expressions.

Empty regions are in many ways similar to I-structures found in Id[53] or logical variables

found in logic programming languages[68]; filling a value is equivalent to a (partial) unification

operation in which the "*" is treated as an unbound variable.

The fill operator is strictly less powerful than the more general assignment operator set.

Whereas fill only operates over empty regions, set can be used to change the binding-value

of any region, empty or otherwise. The subset of Symmetric Lisp that contains fill but not

set is still determinate, however; because of the unification-semantics of fill, different values

cannot be filled-in for the same region. Empty regions and fill combine to provide a greater

degree of expressivity (and efficiency) than is possible in a purely functional language. We use

set only when non-determinism is required and we use fill for applications requiring logical

variables.

2.1.10.1 Lenient Evaluation and Empty Regions

The ability to bind regions to holes and the possiblity of cyclic dependencies among expressions

implies that it is, in general, not possible to determine a static instruction schedule for an

arbitrary Symmetric Lisp expression. As an example, consider the following function:
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f (lambda i j)
(fill a[O3 0) ;;; expression (1)
(fill a[13 (1+ a~i])) ;;; expression (2)
(fill a[2J (1- aCj])) ;;; expression (3)
a : (generate (i (iota 0 2)) *))

Now, consider a schedule in which we choose to evaluate

al] (1+ a[iJ)

before

a[2 (I- a[j])

This works fine if both i and j are 0, but fails if i happens to be 2 and j happens to be 0; a

deadlock would occur even though there exists a non-deadlocking schedule, namely one in which

expression (3) executes before expression (2). Similarly, if we choose to execute expression (3)

before expression (2), we would deadlock if j happens to be 1 and i happens to be 0. Here

also, a non-deadlocking schedule does exist, namely a schedule in which expression (2) executes

before expression (3). We state without proof the proposition that it is an undecidable question

whether an arbitrary program written in a lenient language that supports holes will terminate

(i.e., not deadlock) under some fixed instruction schedule.

2.2 An Example: Multi-Streams

With the operations defined thus fax, we now define an abstraction that plays an important

role in the following chapters. A multi-stream is a distributed data structure[20, 351, a data

structure that can be examined and manipulated by many processes simultaneously. It has the

behaviour of a parallel queue: producers add elements to the back of the multi-stream (in a

single atomic step) and consumers read elements from the head. There may be many consumers

reading from the multi-stream concurrently, but the multi-stream semantics guarantee that only

one producer can append to a multi-stream at any given instant. A multistream bears some

resemblance to a functional language stream [9, 691 except that, unlike conventional streams,

it may be appended to by arbitrarily many processes.

A multi-stream is an interprocess communication mechanism. If we view the elements of a

map as processes, then we can establish a communication stream among them by having them

share access to a single multi-stream. A multi-stream is not intended to define a special sort of
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naming environment; its primary role is to serve as an efficient communication structure between

concurrently executing processes. We call a Symmetric Lisp multi-stream an open-map.

An open-map is defined as follows (we give a side-effecting definition below; an equivalent, but

less efficient functional version is easy to derive but omitted here):

open-map (map
create : (lambda )

(map
stream-lock : lock
stream : (map * *)
tail : stream))

attach (lambda (attach-stream val)
new-stream : (map * *)
(fill attach-stream.stream[l] val)
(holding attach-stream. stream-lock

(sequap

(fill attach-stream.tail[2) new-stream)
(sot attach-stream. tail new-stream))))

acar (lambda (read-stream)
read-stream, stream ll)

mcdr (lambda (read-stream)
(map

stream : read-streamstream[2J)))

To create a new open-map, we write: (open-map.create). Elements are attached to the open-

map in constant time. Note that new-map as well as the initial stream is bound to a map

consisting only of two empty regions. Such a map is, nonetheless, considered to be a value

since it has no internal subcomputations still in progress. The lock on the open-map instance

is held as long as it takes to execute the fill and set operations in the body of the holding

expression. The fill operation extends the multi-stream and the set operation sets the tail

to point to the new end of the stream. The fill operation that drops the new stream value

into stream[l] takes place concurrently with the updating of the stream structure. The attach

function returns only after the updating of the stream takes place.

ucar and mcdr act like their list counterparts: mcar returns the first element of the stream and

mcdr returns the rest of the stream. An mcar or mcdr expression that is evaluated before a

producer has added an element to the stream blocks until such time as an attach operation is

performed. Note that the object returned by mcdr is not an open-map but a map with a binding

for the name stream; it is thus meaningful to evaluate (mcar (mcdr M)), but evaluating (attach

(mcdr N) e) would yield an error.
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2.3 Summary and Appendices

In what sense do the operators presented in this chapter form a "complete" or "sufficient" ker-

nel for Symmetric Lisp? Recall that Symmetric Lisp is intended to be a language that directly

supports the symmetric programming model. The two most important characteristics of the

model axe (1) that program structures i-ad data structures have a uniform representation and

(2) that first-class naming environments are fundamental to the language semantics. Projection

operators, scope-expressions, and abstraction operators are manifestations of the second char-

acteristic; generate expressions, position-sensitive operations, and lock objects are an outgrowth

of the need to support the first feature.

We can partition all Symmetric Lisp operations into two broad categories: (1) operations

that view maps basically as data structures and (2) operations that view maps basically as

programs. Many of the operations (especially in the first category), individually considered,

are not particularly unique to Symmetric Lisp; in fact, most of them exist (albeit in different

forms) in other languages. The novelty of Symmetric Lisp is not in the collection of operations

it supports, but in the way these operators interact with one another in the context of a

programming model that enforces no distinction between the program and data objects they

manipulate.

There are three main operator classes under the maps-as-data interpretation:

1. Operators that generate maps. The generate form acts very much like the list-comprehension

form in Miranda[65] or the array-comprehension form in Id[53].

2. Operators that project names and indices. The select primitive views maps as records

whose named-fields may be selected and spliced-together to form a new map object; its

behaviour is similar to projection operators found in relational database language-,,'2I.

The index primitive views maps as arrays whose elements may be selected by position.

3. Operators that treat maps as shared, lockable data structures. The holding special form

when used in conjunction with locks behaves much like a semaphore and is syntactically

similar to the seize and mutez operators found in Argus[47]8 .
7Miranda is a trademark of Research Software Ltd.
"Holding differs from seize in that it is not possible to temporarily relinquish possession of the lock while

the expression enclosed by the holding operator is evaluated.
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Under the maps-as-programs view, we introduced four significant operator classes:

1. Operators that manipulate maps as environments. The with operator can be thought of

a closure operator that closes an expression with the binding-values of free names in the

expression drawn from the environment yielded by evaluation of its first argument.

2. Operators that build environments. The layer operator composes environments.

3. Operators that constrain evaluation order. The sequap construct implements a left-to-

right evaluation rule for map expressions.

4. Operators that abstract over map expressions. The kappa special form abstracts over maps;

when combined with an appropriate selection operation, it can be used to implement

ordinary lambda abstraction.

Although general arguments have been presented here and in the introduction on the merits of

the symmetric programming model, detailed examples justifying these claims are deferred until

Chapters 4 and 5. These chapters show how to use maps to subsume both conventional program

and data structures found in sequential and parallel languages; novel program constructs are

also presented that are unique to the symmetric model. Before giving examples, however, we

first develop a formal operational semantics of the language in the next chapter.
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Appendix A: Glossary

A table listing all operators presented in this chapter is presented below; next to each operator

name is a short description of its function and the page number in which the construct was first

introduced.

Primitive Forms: 9

map Map constructor. Builds a map in which each of its component expressions is associated

with a region. (page 27).

seqmap Sequential map. Expressions in a seqmap evaluate in a left-to-right order. (page 30).

with Scope-Expression. Evaluates free names found in its second argument using the name

bindings defined by its first. (page 32).

layer Join Operator. Builds a layered map. (page 41).

mlast Returns the value of the last region its its map argument. (page 37).

index Projects a collection of indices onto a map and returns the bindings of those regions in

the map that are found in the positions specified. (page 36).

kappa Builds a lexically-scoped map abstraction. (page 38).

set Assignment operation. (page 32).

fill Fills an empty region. (page 46).

if There are two conditional forms in the language: cond and if; cond can be thought of as a

macro that is built using the if primitive form. (page 45).

holding Evaluates an expression after seizing a lock and releases the lock only after the expres-

sion evaluates to a value. (page 34).

Macro Definable Operations1 °

9A primitive form is an environment or control-flow related construct with idiosyncratic syntax whose seman-
tics carnot be captured by translation into other primitive forms.

10A macro definable operation is an operation that can be expressed by translation into other primitive forms
and user-definable functions.
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generate Generates a new map by evaluating an expression containing a free variable which is
systematically bound to each element in the argument map. (page 44.) Iota is a simplified
form of generate defined such that (iota 3 n) returns

(map m 3+1 ... n)

select Projects a collection of names onto a map and returns the bindings of these projected
names in a map. (page 36).

lambda Builds an abstraction that, instead of returning an entire map when applied, returns
only the last element. (page 40).

logical Operators Logical operators, e.g., and, or, xor etc. are macros. (page 45).

Primitive Functions

msize Returns the number of elements in a given a map. (page 30).

apply-env Returns the address of the map object in which it is evaluated. (page 39).

Common Lisp Operators All arithmetic and string operations are primitive functions.

Predicates All Symmetric Lisp predicates used in the examples are primitive functions.

Special Symbols

priv Declares a binding to be private: no expression found outside the lexical environment
defined by the map in which a private name occurs has access to the name's binding-
value. (page 34).

lock Yields a lock. When evaluated, it returns a new lock object. (page 34).

error Yields a special error value. (page 36).

* Denotes an empty region. (page 46).
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Appendix B: Syntax

The BNF grammar for a subset of Symmetric Lisp is shown below. Terminal and keyword

symbols are shown in type-writer font, and non-terminals are displayed in roman font. Al-

ternatives are separated by double vertical bars (I). Optional expressions are placed in angle

brackets, < ... >. The form {Exp}* indicates that Exp may be repeated zero or more times,

the form {Exp}+ indicates that Exp may be repeated one or more times:

Program ::= (map {<<priv> Id :> Region}*)
Region ::= Primitive-Form I Abstraction I CL-Form * lock

Primitive-Form ::= Basic-Exp I Map-Constructor
Basic-Exp ::= Id I Scope-Exp I Application I Assignment I Select I Conditional
Map-Constructor ::= Program I Generator I Projector

Id ::= a sequence of alphanumeric characters
Generator :: (generate (Id Primitive-Form) Region) I (iota Basic-Exp Basic-Exp)

(layer Primitive-Form Primitive-Form)
Projector ::= (select Primitive-Form {Id}+) I

(index Primitive-Form {Basic-Exp I Integer}+) I

Select ::= (milast Primitive-Form) I Primitive-Form[ {Selector,}* Selector]
Selector ::= Basic-Exp I Integer

Scope-Exp ::= (with Primitive-Form Region) I Primitive-Form.Region
Abstraction ::- (kappa ({(priv Id) Id}*) {Region}*) I

(lambda ({(priv Id) I Id}*) {Region}*)
Application ::= (Function {Region}*)
Function ::= Basic-Exp I Abstraction

Conditional ::= (cond {(Test Region)}+) I
(if Test Region <Region>)

Test ::= Basic-Exp I Boolean
Assignment ::= (set Id Region) I (set Primitive-Form.Id Region) I

(set Primitive- Form[Selector] Region)
(fill Id Region) I (fill Primitive-Form.Id Region) I
(fill Primitive- Form[Selector] Region)

Cl-Form ::= Arithmetic Operations, Boolean Operations (including keywords t and nil)
and String Operations
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Chapter 3

An Operational Semantics

This chapter gives an operational semantics for a significant subset of the language described

in the last chapter. We present the semantics of all primitive forms except holding, layer and

index, i.e., we give the semantics for map, seqmap, with, mlast, kappa, set, fill and if. We also

do not consider the semantics of priv names; here again, incorporating private names into the

semantics is conceptually straightforward, but its inclusion complicates the basic name-lookup

rules.

The semantics is defined by a collection of rewrite rules that describe the transformations to an

expression performed by an abstract Symmetric Lisp interpreter. Our rewrite rules differ from

more traditional term rewriting systems[13, 45] in two important respects:

1. The rewrite-rules do not reflect a semantics based on a substitution model; maps and
regions are always shared, never copied. Consequently, the semantics includes meta-
functions to read and write regions in environments defined in the abstract interpreter
state.

2. Regions can be side-effected; regions containing empty holes can be filled-in and regions
containing values may have those values overwritten; the reduction strategy used by the
interpreter is, therefore, sharply different from common reduction strategies employed for
combinatory reduction systems such as the pure A-calculus.

Standard term-rewriting systems operate directly over terms in the language of interest; no

meta-language constructs need to be introduced. The ability to side-effect and share regions

requires our rewrite-rule system to introduce a meta-language containing states and addresses.

Despite the added complexity of the rewrite semantics brought about because of these special

features, many of the techniques used to infer important properties1 of languages definable by

'Confluency and termination are examples of two important properties.

57



58 CHAPTER 3. AN OPERATIONAL SEMANTICS

standard term-rewriting system can still be employed. The abstract Symmetric Lisp interpreter

is a state transition function that, given a reducible expression and a state, returns a new state

that reflects the evaluation of this expression. Given an initial state, the value of a Symmetric

Lisp program is the final state produced by the interpreter, i.e., the state in which there are

no further reducible expressions. (Of course, there are many useful programs for which there

is no final state.)

Before presenting the rewrite rules, we first define some basic terms:

Definition 3.1 An expression is defined inductively as follows:,

" Values (defined below) are expressions.

" Variables (denoted by lower case italics alphanumeric characters) are expressions.

" A kappa or lambda definition is an expression.

* (f a, a2 ... an) is an expression if f and a1 ,a2 ,... ,an are expressions.

* If el, e2 , ... en are expressions or name bindings2 , then (map el e2 ... en) is an expression
as is (seqmap el e2 ... en).

* If M and q are expressions, then M.q is an expression.

* If eb,et and ef are expressions, then (if eb et e1 ) is an expression.

* If M is an expression, then (&last M) is an expression.

* If v is an expression, then (fill x v) is an expression where x is an identifier, as is (fill
el.x v) if el is an expression, and (fill el[e2] v) if el and e2 are expressions.

o If v is an expression, then (set x v) is an expression where x is an identifier, as is (set
el.x v) if el is an expression, and (net el[e2] v) if el and e2 are expressions.

Definition 3.2 A Symmetric Lisp value is defined as follows:

o Constants, e.g., numbers, booleans, and strings are values.

o The special symbol, *, is a value.

o A kappa or lambda closure (see page 65) is a value.

o A map structure, (map el e2 ... en), where each of the ei are values or, if ei is a name
binding - i : e - where e is a value.

o An address (defined below) is a value.
2 A name binding is of the form, "id: e where e is an expression and id is a name.
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Definition 3.3 We say that identifier n is free in exp if one of the following conditions hold:

* exp = n

* exp=i : eandi# nandnisfreeine.

* exp = (kappa(fi f2 ... fk) e) and n 0 fi, 1 < i < k and n is free in e. (Similarly for a
lambda abstraction.)

" exp = (e, e2 ... ek) and n is free in el or e2... or ek.

• exp = el.e 2 and n is free in el.

" exp=(mapel e2 ... ek) andei $ n:eforall i, 1< i< k and n is free in el or e2 ...

or ek. (The same holds true for a soqmap expression.)

3.1 The Structure of the State

A Symmetric Lisp state consists of a finite set of environments,

{PIP2...Pk}

where pi represents an address for an environment. An environment is a pair:

< parent, map >

where map is an environment address and parent is the environment address of the map's parent

environment in the state. The name-lookup rule described in Chapter 2 captures the notion of

an evaluation and naming environment, but is meaningful only when maps are defined relative

tu their lexically enclosing parent; the parent field in the environment structure is used to specify

the evaluation environment of a map.

If an environment has address pi, then its map field has address M(pi) and its parent field's

address is denoted as P(pi). The meta-level expression, "P(pi)", evaluates to the address of the

jth outermost environment of the environment with address pi; as the base case, P°(pi) = pi.

Thus, if Pt(p) = pi, then the bindings defined by the map with address M(pi) are the bindings

found in the ith outermost evaluation environment of the map whose environment address is p.

If p has no parent, then P(p) = 4 where 0 is a unique address that references the "initial" or

"empty" environment.

The meta-level semantic function Contents is used to manage access to the global state. Given

an address a, Contents returns the object referred to by a in the current state. The expression



60 CHAPTER 3. AN OPERATIONAL SEMANTICS

Contents(M(a))[il returns the value of the ih region in the map whose address is M(a)'; if

the region is named, Contents returns just the binding-value and not the entire binding.

The Size function, given an environment address p, returns the number of elements in the map

addressed by M(pq). In addition to these functions, there are also predicates to test whether

an expression is a value, whether a value is an address, etc.

The initial state consists of an environment containing a single map expression and 4); the

parent environment of this map expression is 0. The Symmetric Lisp interpreter evaluates this

map expression, producing a new state that reflects the evaluation of this expression. A state

whose environments contain only values is called a final state.

3.2 The Structure of a Rewrite-Rule

It is convenient to describe the behaviour of the abstract interpreter in terms of a collection

of rewrite rules. Each rewrite rule describes the new state produced by the interpreter given

an expression and the current state. When considered collectively, the rewrite rules define

the operational semantics for the language. The function Eval, representing the interpreter,

implements the rewrite rules given below; its domain equation is given as

Exp x State - State

A reducible expression is tagged in our abstract machine with the symbol "?"; an expression

tagged with a "?" is said to be marked for evaluation. Thus, to reduce the expression (+ 2

1), we denote it in our abstract machine as: [(+ 2 1), ?]. Every rewrite rule either reduces an

expression to a value or tags the expression's subexpressions with a "?", thereby making them

eligible to be reduced. The evaluation environment of a reducible expression can be explicitly

specified. The meta-expression "[p I e]" is to be read, "Expression e is to be evaluated in

environment p"; the meta-expression "[p I e, ?]" indicates that e is a reducible expression that

is to be evaluated in environment p.

The notation:

fpip2 ... pk[.. [e,? .p.}

{PIP2 ... Pk[... e'.....P)
3 Although Contents is evaluated relative to a particular state, we omit including the state if it is obvious

from context.
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is used to describe a rewrite-rule that denotes the sentence, "Substitute for expression e found

in environment pk in state {PIP2 ... Pk... p.} the expression e'."

A single reduction may change several regions or may introduce new environments; unlike

conventional term-rewriting systems, a rewrite-rule can, in addition to reducing the current

reducible expression, change the contents of other regions or add new environments to the

global state. Thus, for example, the rewrite-rule:

{PI P2 ... Pk[[" i ... ]... Pk[... [e,?]...]... p-}

{PI P2 ... pj[... e'...]... pk[... '...]... p,}

specifies that, in addition to substituting e' for e, the contents of the rth region in the map

whose address is M(pi) (here referred to as el) also is to be changed to contain e'.

3.2.1 Constants

The evaluation of a constant expression yields a constant value. Thus, if v is some constant

expression, then

{P P2 ... Pk[... [P I v,?]...]... p.}
{PIP2 ... Pk[... V........pT}

Note that an empty region, denoted by a *, is also considered a value. Because a * is considered a

value, a map value may also contain empty regions. Empty regions do impose some restrictions

on how the interpreter may reduce expressions - no name expression bound to an empty region,

for example, can be selected for reduction; similarly, no selector expression that selects an empty

region can be fully reduced nor can a sequap expression whose component element references

an empty region.

3.2.2 Name Resolution

The value of a name is determined by looking for the appropriate binding in the closest enclosing

map referenced by the environment within which the identifier is to be evaluated. Formally, let

e = [pj I id, ?], e' = id : v, v a non-* value such that e' occurs in the map whose address is

M(ph), and Ph = P'(pj), m >_ 0. Suppose, furthermore, that there does not exist f < m such

that M(PI(pj)) is the address of a map that defines a region named id. Then
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n

{PI P2 ... Ph[... e' ... Pk[... e. ] , }
n

{PI P2 ... Ph[- ... Pk[... V...]...Pn}

A name expression resolves into the value to which the name is bound. Note that a variable

reference is reducible only after the name becomes bound to a value; references to a name n

whose associated binding is of the form n:e cannot be reduced until e becomes a value.

3.2.3 Environment Evaluation

New environments are added to the global state via the map form. The evaluation of a map

creates a new environment address. Given a reducible expression4

e [pi I (map
id, :exp

idk eXPk

ezpk+1

exp,), ?I

then

{PI P2 ... pk[... e ...... pn}
{P1 P2 ... Pk[.., .P .1 ..] . .. Pn P.+l}

where Pn+1 is a new environment address such that P(p.+I) = pi and Contents(M(pn+1)) =

(map
id, [Pn+l 4 eXpI, ?]

idk [P,+i 4 eXpk, ?]

[Pn+i 4 expk+l,?]

[Pn+i expn,?])

Our semantics allow elements of an environment to be accessed once it has been recorded as

part of the 9!obal state. All exp, in the map expression associated with this environment will

evaluate in nae newly created environment, P,+i.

'Bindings can appear anywhere inside a map. However, for clarity of presentation, we adopt the convention
that binding forms appear before any other expression inside a map.
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The absence of any ordering rule governing the evaluation of expressions in a map means that

parallel evaluation of a map's subexpressions is allowed. All ezpi in the map expression associ-

ated with this environment will evaluate in the environment in which the map was created.

3.2.4 Region Selection

The miast operator returns the last element of a map. If e = [pj I (miast el),?] and el is not

an address, then
{P1 P2 ... pk[... e......p}

{Pi P2 ... Pk[... [(miast [pi I ei,?]),?]...]... p,}

If e = [(last pq), ?] where pq is an environment address such that

Contents(M(pq)) = (map el e2 ... ek v)

or

Contents(M(pq)) = (map el e2 ... ek id : v)

where v is a non-* value, then

{P1 P2 ... pq... Pk[... e ..... p }

{PI P2 ... Pq... Pk[... V ... ]...Pn}

Note that the non-strict semantics of maps allows an miast expression to be reduced even if

some of the argument map's elements are still under evaluation; the only constraint on the

reduction of an miast expression is that the last element in the argument map be a non-* value.

3.2.5 Specifying the Evaluation Environment

Given a scope-expression: e = [pi I el.e 2, ?I in which el is not an address, the following

rewrite-rule is applicable:

{P1P2 ... Pk., e...p...p}

{Pi P2 ... pk[... [[pi I e,?].[p I e21,?]...I... p.}

If e = [pq.[pj I e2], ?] where Pq is an environment address, then

{JP P2 ... P ... Pk[.., e ... ]...1}
{P1 P2 Pq ... P... [ .P+I , e2 ,?].....p Pn+l}

where M(p.+i) = M(pq) and P(pn+1) = Pj.
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In words, the target expression of the scope-expression, e2, is evaluated in a new environment in

which the address of the local map structure, M(p,,+1 ), is M(pq) and the parent link, P(p,,+1 ),

is pj. Because M(pn+1 ) = M(p,), i.e., because a map structure is shared between two

environments, any changes made by e2 to elements found in the scope-expression's source map

are visible to any other expression that happens to access that map.

3.2.6 Sequential Evaluation of Maps

To simplify the presentation, we only consider seqmap expressions that do not define name

bindings5 .

If e = [pj . (saqap el e2 ... e,),?]

{pi p2 ... p[... e......p}

{Pl p2 .. Pk[... [(seqzap [pijI el,?] [pi e2] ... [A I e.), ?I...]... pn}

Note that we propagate the evaluation environment of the sequap across all sub-expressions

of the seqmap. This propagation operation effectively builds a closure for each of the sub-

expressions. If we didn't record the address in this manner, the interpreter would have no

history of the expression's proper evaluation environment.

The evaluation of a seqmap's component elements is specified as follows. If

e = [(,Squap V1 [P I e2] ... e,),7?

where v, is a non-* value then

{p1 P2 ... Pk[... e...]... p.}

{P1 P2 ... Pk[... [(,eqap VI [p I e2,?J ... e.),?]...p...p}

Notice that once el has evaluated, the next expression is tagged as eligible for evaluation; p is

the expression's evaluation environment. Similar rules apply for each ei. Once the first n - 1

component expressions have evaluated, we can transform the seqmap into a map value. Thus,

if

e = [(,,.qap vI v2 V3 ... [p I en]),?]

5Introducing name bindings within a seqmap complicates the semantics considerably. As currently defined,
the name-lookup rule operates only on maps, not seqmaps. If name-bindings were allowed in a seqmap expression
and the binding-value of these bindings could be accessed by other expressions in the same seqmap, the name-
lookup rule would have to be modified to support traversing seqmap as well as map objects.



3.2. THE STRUCTURE OF A REWRITE-RULE 65

and each of the vi (1 < i < n - 1) are non-* values then

{Px P2 ... pk[... e ..... Pn}

{P1 P2 ... Pk[... Pn+ 1 ..... Pn Pn+1}

where Pn+i is a new environment address defined such that P(p,+i) = p and

Contents(M(P,+l)) = (Map v1 v2 v3 ... [P I en,?]).

Note that this semantics prevents selection of elements from a seqmap until the seqmap turns

into a map; it is possible to support selection of seqlap elements, but this would require changing

the selection rules slightly.

3.2.7 Environment Abstraction and Application

A kappa expression evaluates into a closure-like object whose evaluation environment is fixed

to be the kappa's define-time environment. If

e = [Pt 1 ( kappa (id, id2 ... id.) el e 2 ... e.),?]

then

{P P2 ... Pk[... e......pn}
{P)P ...P k[.. e'...]...pn}

where e' =

[Pl I ( kappa (id, id2 ... idn) ( map el e2 ... e))]

We call an evaluated kappa expression a kappa closure. The effect of evaluating a kappa object

is to collect the expressions constituting its body into a map expression; the evaluation envi-

ronment of the closure is the evaluation environment of the kappa expression. Even though the

map expression is unevaluated, the closure itself is regarded as a value. The only operation

that can be performed on a closure object is application.

Kappa application in Symmetric Lisp is defined in terms of map evaluation. If

e = [pi I (e, aa 2 ... a,,), ?]

then

{P1 P2 ... Pk[... e...]... pn}

{PI P2 ... Pk(... [([Pj I el,?] [pi I a1,?] [pi 4 a2,?I... [pj 4 an,?]),?]...... Pn}

Given an expression, eappj of the form
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[(p[p1 ( kappa (id, id2 ... ida)
( map el e2 ...

hi h 2 ... h.),?]

where the hi are either expressions marked for evaluation or values, then

{PI P2 ... P . . . 1 ... Pn}
{P1 P2 Pk[... Pn+1 ...... .Pn Pn+l}

Pn+1 is a new environment address defined such that P(P+l) = Pt and Contents(M(p+l)) =

(map
id, :h
id 2  h2

idn hn
el
e2

en,

If ei is not a name-binding form, then e = [pn+l j ei, ?]; if ei is a name-binding form: id: exp,

then e = id : [Pn+1 I exp,?].

The value of the formals defined in the closure object, idl, id2, ... idn are bound to the values

of the corresponding actuals found in the application; the evaluation environment of expressions

in the kappa application-map is the evaluation environment defining the binding-values for the

formals and whose parent link is the lexical environment of the kappa. The map expression that

contained the elements constituting the kappa's body is removed in the map returned by the

application; its evaluation environment is used to determine the parent link of this application.

The application semantics of kappa is akin to a "parallel call-by-value" 6 semantics - the body

of the kappa can be evaluated concurrently with the evaluation of the arguments since both

the reduction of the actuals and the map instantiation of the kappa template can be performed

simultaneously; the evaluation of the kappa-closure also proceeds concurrently with evaluation

of the actuals. 'the reader should keep in mind that a non-strict semantics does not imply

laziness - all actuals in a kappa application are still evaluated; if the evaluation of body does not

need the value of an actual, however, it does not need to wait for that value to be computed.
8The definition of call-by-value as used in sequential languages usually requires that the value of the formal be

known before the function is applied. Call-by-value, in the context of a non-strict language, refers to a procedure-
calling protocol in which both the arguments to the procedure as well the body of the procedure are evaluated in
parallel. It is different from a call-by-need or lazy evaluation semantics in that actuals are evaluated independent

of whether they are actually required in the procedure.
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A lambda expression evaluates in the same way that a kappa does: a lambda evaluates into a

lambda-closure with the same structure as a kappa's. Suppose that eapply is as defined above

except that it is a lambda-closure (rather than a kappa closure). To reduce eppl,, we use the

following rewrite-rule:

{P1P2 ... Pk[... eo,, . . . . . . p,}

{Pi P2 ... Pk[... [(ulast P,+I),?]...I... Pn}

In other words, the result of applying a lambda-closure is the value of the lambda body in the

template structure that would have been generated by the equivalent kappa expression. Note

that this definition assumes that the lambda body always appears last in the generated lambda

closure; the choice of making the body the last element in the closure is arbitrary and may

actually be considered an "asymmetry" in the language. In the abstract, the body may appear

anywhere within the lambda closure so long as the appropriate selector operation is used at the

time of application.

3.2.8 The Fill Operation and General Assignment

There are several possible ways a fill expression may be reduced; the one actually chosen is

dependent on the structure of the expression itself (e.g., whether an identifier or an index is

given as the fill's arguments) as well as the contents of the region to be filled.

If the region to be filled-in is not empty, the f.ill expression is reducible only if the value to be

dropped into the region is equal to the value currently resident in the region; it is not possible

to fill a non-empty region with a value distinguishable from the item currently found in that

region.

We can state our definition of equality precisely as follows:

Definition 3.4 Two values vj and v2 are equal (written vi = v2) iff

* v, and v2 are primitive constants, i.e., integers, booleans, and strings and are equal under
the obvious definition of equality for these types.

" If vi is a kappa-closure of the form:

[pl I ( kappa (id, id2 ... ida) ( map el e2 ... e,))]

then V2 is a kappa-closure of the form:

[pi I ( kappa (id, id2 ... id,,) ( map el e2 ... e,,))]

A similar definition applies for lambda-closures.
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" vi and v2 are map values such that

1. Size(vi) = Size(v2)

2. vx[i] = v2 [i] for all i, 1 < i < Size(vi)

3. If the ith region in v, is named x, then the i th region in v2 is named x and vice versa.

" vl and v2 are environment addresses that reference map values such that

Contents(M(P'(vi))) = Contents(M(Pi(v2 )))

for all i > 0.

There is a single rewrite associated with each of the different forms fill may have.

Case 1: Let e = [pi I (fill x el),?]. Suppose that there exists an e' = x : v' such that e'

occurs in a map whose address is M(ph) where Ph = Pm(Pj),m > 0. Suppose, furthermore,

that there does not exist f < m such that M(P(pj)) is the address of a map that defines a

region named x. Then

{PI P2 ... P . P...}..p,}

{P1 P2 ... Pk[... [(fill ph.X [p I ej,?]),?]...]... p,}

Case la: Let e = [(fill ph.X v),?] where Ph is as defined in Case 1. Then, for v' = or v' =v,

r

{PI P2 ... Ph[ ... X :V'-l.. Pk[... e...P,}()
r

{P P2 ... Ph[ ... X: v.. ... Pk[... v..... p}

Case ': Let e = [pj I (fill el.x e2 ),?]. Then

{f P2 ... pk[... e...... p,}

{Pi P2 ... pk[... [(fill [pj I el,?].z [pj I e2 ,?]),?]...I... p,}

Case 3: If e = [pi 1 (fill el[e2] e3 ),?], then

{PI P2 ... Pk[.., e...}...p,}

{Pi P2 ... Pk,... [(:fill [p, 1 el, ?].[p I e2, ?] [P, I e3 , ;]), ... ]... p"}

Given an expression e = [(fill ph[r] v), ?], then for v' = vor*, e can be reduced by applying

the following rule:

r

{Pi P2 ... Phi... v'...1... Pk4... e .. . .P }

{P P2 .. Ph[..V ....... pk[... V....... p-}

IEE IEEE IN
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Suppose, without loss of generality, that the r th region in Ph is of the form: x : v' where v' is

as defined above; is then reduced using rule (*).

Symmetric Lisp contains an assignment operator, set, that is used to redefine name bindings.

The set operator is a generalization of the fill operator in that it allows any region, regardless

of whether it is empty or not to be mutated. Thus, unlike fill which performs an equality

check between the value that is to fill a region and the contents of the region itself if the

region is not empty, set replaces the contents of the region without performing such a check.

Notwithstanding this difference, the rewrite rule for set is identical to that of fill and is

omitted here. Readers should note that both fill and set are strict in both arguments - the

value replacing the contents of a region must be known before any substitution takes place.

3.2.9 Conditional Expressions

Conditional expressions are written using the if primitive; cond is to be thought of as a macro

built using if.

If e = [pj I (if pet ef),?] then

{PI P2 ... Pk[... e.....,p,}
{P P2 ..- pk[... [(if [p I p,?] [pi I et] [p I ef),?]......p,}

In order to remember the proper evaluation environment that the arms axe to evaluate within,

we propagate the evaluation environment into both arms without marking them (yet) for eval-

uation.

If e = [(if t [pj I et] (pj I e1 ]),?] then

{p iP2 ... Pk[... e...]... p,}

{P1 P2 ... Pk[... [p3j et,?]...I... p.}

If e = [(if nil [pj I et] [pj I e1]),?] then

{P, P2 ... Pk[... e...)... p,}

{PI P2 ... pk[... [pjt ef,?]...I... p.}

Once the value of the predicate is known, the appropriate arm can be tagged for evaluation.
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Figure 3 : The Diamond Property

3.3 Confluence

A rewrite-rule system in which the final state produced from some initial state is invariant

under the reduction sequence taken by the interpreter implies that the language described by

the rewrite-system is determinate. An important question that may be asked given the rewrite-

rules for Symmetric Lisp is whether the rewrite-rules are indeed confluent: is the order in which

reductions are taken relevant in determining the value of a program?

To make our discussion precise, we define the notion of confluence formally as follows:

Definition 3.5 Let a state transition relation, ---- R, be a binary relation:

-----Rg (State x State)

Then, - R satisfies the diamond property if

V states M, M 1 , IM"2 [M R M1 A M -*R M 2] = 3M 3 s.t. MI -R M 3 A M 2 -R M 3

We say that a state transition relation, -R , satisfies the Church-Rosser property if: ==*R,
the reflezive, transitive closure of '-*R satisfies the diamond property.

The reason why -R is said to satisfy the "diamond" property can be best understood if we

consider the definition statement graphically. (see Figure 3).

TIe diamond property captures the notion of confluence: informally, it states that any two

reductions of a term themselves ultimately reduce to a common term. Thus, regardless of

which reductions one takes, the final answer is guaranteed to be the same.

To help us think about this problem, it is useful to view Symmetric Lisp in terms of a three-tier

stratified hierarchy of languages: at the lowest level, we consider a subset of the language (call
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it SLo) containing axithmetic and environment-related operators, abstraction, conditionals and

constants. It is easy to convince oneself that such a subset is indeed confluent; indeed, it is

straightforward to exhibit a transformation that takes Symmetric Lisp expressions in this subset

to terms in the first-order lambda-calculus which is well-known to have a confluent rewrite-

system. Map expressions, for example, can be transformed into functions that take names to

either a ground value or an error if the name is not defined by the map. A scope-expression

could be understood as a function that applies its first argument (which, in this example, would

be a map function) to each free name in its second argument; if the application yields an error,

then the name is applied to the map function defining the evaluation environment of the scope-

expression. Transformations of the other applicative operators can be performed along the same

lines. A purely applicative subset of Symmetric language, in other words, is determinate.

The topmost-tier in the hierarchy consists of the full language including general assignment.

Because of the language's non-strict operational semantics, one can exhibit simple programs

that are non-determinate: because set destructively mutates a region, multiple set's on the

same region can lead to non-determinism: the order in which the assignments occur affects

the final value of the region. General assignment in the presence of non-strictness leads to

non-determinism.

The most interesting level in this hierarchy is the middle one. This level (call it SLo + F)

consists of the applicative subset defined by level one augmented with fill and empty regions,

but does not include general assignment. Are the rewrite-rules which define terms constructible

from this level also confluent?

To relate confluence to our restricted subset, we need to define the rewrite-rules in terms of a

state transition relation:

Definition 3.6 Let Z =< SL o+F, -T> be an algebraic structure (called an Abstract Reduction
System) consisting of a language SLo + F and a relation --- on states defined as follows:

if
r

{PIP2 P.. e...] .. pm)

...p ' p [. .. e ' ...] .. , p '}

(where m < n and p is identical to state pi except for any substitutions to terms in pi specified
by the reduction of e and where the reduction of e yields e')

then

{Pi P2 ... Pk ... P} -1 {P'i ... Pk ... p'}[p[r],e']
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where S[pk[r],e'] denotes the state derived by substituting e' for the rth region in environment
Pk found in S.

We posit the following conjecture:

Conjecture 3.1 -- satisfies the diamond property.

This statement asserts that the order in which reducible expressions are reduced will not affect

the meaning of the program: if el and e2 are two reducible expressions in some state S such

that the reduction of el produces a new state S, and the reduction of e2 produces a new state

S2, then there is another state S3 that can be reached from both S1 and S2 by the reduction

of expressions in those states resp.

The reason why this should be the case is intuitively obvious: a fill operation can either fill

an empty region (which, according to the operational semantics, cannot be read or copied by

any expression) or fill a value identical to the one currently occupying the region being filled.

In this case, the fill operation effectively behaves as a "no-op" instruction: its execution has

no perceptible non-local effect on the global state.

What is the effect on the global state if two fill operations try to fill different values for the

same region? Based on the operational semantics, the second fill operator will never get

reduced since the reduction of a fill expression is predicated on the fact that either the region

being filled-in is empty or contains a value identical to the value of fill's second argument. A

race-condition exists here that must be taken into consideration when we try to formally prove

the confluence of the SLo + F. Consider the following program:

(map

(fill x 2))

Depending upon which fill is reduced first, the value of x will be either 1 or 2. Moreover,

there is no rewrite-rule that indicates that such a program is actually in error. We, therefore,

introduce the following extra "blowup" rule to handle such a case:
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Case 4: Let e be [(fill pi.x v), ?]. Suppose that there exists an e' = x : v' such that e' occurs

in a map whose address is M(ph) where Ph = P'(pj),m >_ 0. Suppose, furthermore, that

there does not exist f < m such that M(Pf(p)) is the address of a map that defines a region

named id. Then, if v' * or v' i v then

r

{PI P2 ... Ph[.., :v'......P[... e...]... p.}
{T}

(Similar rules apply to the other forms of fill.) T defines the error state: the value of a

program containing multiple fill operations on the same region is in error. This constraint is

severe, but is necessary to satisfy the confluence property. To support this rule, we must define

a state to be either a finite set of environments or the special error value T. The value of a

program that reduces to a state bound to T is T.

Note that an approach in which errors are propagated locally would not be sufficient. In other

words, a semantics that replaced the contents of the region named x with a special error value,

(say, error), must still address the fact that other expressions may have read x while it was still

bound to v'; only expressions that subsequently read x will see the error flag. Such a program

is clearly non-determinate since the value of x seen by an expression depends upon the order

in which the reductions are performed - expressions reduced before the error flag is stored will

see v'; expressions reduced afterwards will see error. By simply reducing the entire state to

an error value, we can guarantee that a program containing two fill operations on the same

region will still yield the same value (here a state defining T) even if the values being filled are

different.

3.4 Summary

The formal operational semantics presented in this chapter could be used as the basis for the

implementation of a Symmetric Lisp interpreter; since the rewrite-rules arc unambiguous, the

interpreter can determine which reduction to perform by simply examining the expression and

the necessary elements of the global state. The rules themselves are more cumbersome than

the rewrite rules for standard combinatory systems like the A-calculus; the added complexity is
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clearly due to the presence of an abstract store and the need to distinguish between addresses

and primitive values. However, the fact that maps are used to represent both programs and

data avoided the need to have a separate domain of data structures and program constructs;

the definition of normal form was sufficient to define the notion of data structure.

The remainder of the thesis is devoted to describing applications and implementation of Sym-

metric Lisp. Although we will be informal in our description, the precise meaning of all the

examples given in the thesis can be understood using the formal semantics given in this chapter.

The reader should feel free to use the semantics presented here as a formal reference manual

for the language.



Chapter 4

Paradigms and Applications

Central to the symmetric programming model is the notion that program structures are data

objects; a program has a well-defined "shape" and it can be examined and built in the same

way that a conventional data structure can. What are the merits of such a model and what

paradigms does it support well? This chapter investigates these questions by examining three

closely-related issues: section 4.1 examines the implications of uniformity of program and data

for program design and methodology, section 4.2 discusses the meaning of modularity in the

symmetric language context focusing on how first-class naming environments can be used to

build modular programs, and section 4.3 examines the synergistic interaction between first-class

environments and parallelism.

4.1 Uniformity

What are the ramifications for program-building if program structures are treated identically

to data structures? Most programming models preserve a clear distinction between the role

of a data structure and that of a program. In Symmetric Lisp, such a separation does not

exist: because any program can be thought of and used as a data structure, the Symmetric

Lisp programmer has great flexibility to express a wide range of different program constructs

found in other languages.

When it is said that one can model program structure P found in language L in Symmetric

Lisp, it does not mean that the Symmetric Lisp version is identical to the original structure,

but that it captures the essence of the original. It may not be the case that a Symmetric Lisp

75
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programmer will choose to write Symmetric Lisp programs in the style encouraged by another

language, but it is important that the abstractions provided by different program constructs

found in other languages be expressible simply (and efficiently) using maps so that in cases

where such abstractions are indeed useful, the programmer has the capability to implement

them without great effort.

To begin with, consider the following (superficially different) program structures found in several

modern programming languages:

" An Algol-60[52] block or a Scheme[31, 59, 58] letrec statement used to define a local
naming environment. A block statement or a let expression defines a collection of local
names and evaluates some expressions using the bindings given to those names.

" An Ada[3] package or a Modula[71] module used to encapsulate a related collection of
data and procedures. These structures serve as the basic program structuring mechanism
in these languages. It is possible to instantiate many copies of a package or module with
each instantiation having its own copy of local data.

" A CSP-style[42] "cobegin" or multi-tasking structure of the form:

cobegin <local variables> SI; S2; ... Sn coend

used to create n concurrent threads of execution within a local namespace. The spawned
processes communicate either through shared data or through explicit communication
primitives (e.g., the message passing operators found in CSP).

* A guarded-command[281 construct found in languages such as Concurrent-Prolog[55]. A
guarded command is a program structure that consists of a series of statements each of
which is prefixed by some boolean expressions (called guards). A statement is eligible for
execution only when all of its associated boolean expressions are true. If several guards
in different statements become satisfied simultaneously, the statement finally chosen to
be executed is chosen arbitrarily.

" Structures used to build infinite data objects such as streams found in languages like
Miranda[651 or VimVal[261. In languages that are not based on a demand-driven evalua-
tion model, special program structures are needed to delay the evaluation of expressions.
These structures typically consist of a reference to the form whose evaluation was deferred
and a reference to the binding environment in which the expression is to be evaluated'.

" The class construct found in inheritance-based object-oriented languages such as Simula[23]
or Smalltalk[38 is a structuring tool that allows the programmer to encapsulate and share
information among objects of many different types. Objects can inherit operations defined

Suspensions first proposed in [33] implement a lazy cons cell in this way. (An Algol-60 thunk can be
thought of as basically a suspension; it differs from suspensions in that it was used only by the implementation
and there only to realize call-by-name parameter passing; it was not available to the programmer for building
lazy data structures.) The delay special form found in MIT Scheme and in MultiLisp is a generalization of a
suspension that can be used to delay any expression.



4.1. UNIFORMITY 77

on their supertypes; when an object receives a message2 , it first searches the methods3

defined in its class to see if the appropriate procedure is defined there; if it is not, search
proceeds to the object's superclass and so on until a matching method is found.

What do these constructs have in common? On the surface, not much; some deal with paral-

lelism, others with namespace management, and still others with controlling expression evalua-

tion. Interestingly enough, all these structures have a straightforward interpretation in Symmet-

ric Lisp. The parallel evaluation semantics of maps makes them suitable for describing parallel

constructs like cobegin-coend statements; the fact that maps define first-class structure-based

naming environments 4 means that they can be used to model a variety of different namespace

manipulating constructs; the implicit block-on-uncomputed-values rule and the fact that empty

regions can be used to explicitly synchronize the evaluation of expressions give the Symmetric

Lisp programmer flexibility in controlling expression evaluation. It is not the case that a map

structure is fortuitously useful in several unrelated domains: we argue that the semantics of

maps faithfully captures, and in many cases extends, the semantics of these other program

constructs.

A comparison between Symmetric Lisp's approach to implementing these constructs and their

realization in other languages is given below.

4.1.1 Blocks and Local Naming Environments

A structure like the Algol block

begin integer x, y, z;
x := expri; y := expr2; z := expr3;

expr4

end

can be thought of as the following map:

(map

priv z expri

priv y expr2

priv z expr3

2A message is a request for an object to carry out some operation.
3 A method is a procedure defined on an object that describes how the object should carry out a particular

operation.
4 Structure-based as opposed to Function.based a naming environment could be thought of as a function from

names to values, but it is more appropriate in the Symmetric Lisp context to view a naming environment as a
record in which each record field defines a binding in the environment.
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expr4)

Unlike an Algol block, the above map yields a value; the value it yields is an environment

(defines names) but, because it has a well-defined spatial interpretation, it can be treated like

a data structure. Note that because the names defined in the above expression are declared

as private, they are not visible to expressions outside of the map - this is consistent with the

scope rule for local names found in an Algol block.

Since the map version of the block behaves like a data structure, its elements can be selected

by position as well as by name. To turn the above map into a Scheme-style letrec,

(letrec ((x expri)
(y expr2)

(z expr3))
expr4)

we need only wrap a selector operation around the map to retrieve the value of expr4. Thus,

the expression:

(miast
(map

priv x : expri
priv y : .xpr2
priv z expr3
expr4))

returns the value of expr4 in the block. The expressions local to the block themselves evaluate

in the same environment; thus, expressions may be mutually recursive. This map structure is

•a -lly, therefore, a bit more general than the Scheme letrec. In Scheme, it must be possible

to evaluate each of the binding expressions without having to refer to the value of any locally-

defined variable. Thus, while a Scheme letrec can define mutually-recursive procedures (since

name references in a procedure body do not refer to a variable's value at procedure definition

time), it cannot support more general mutual recursion. The concurrent evaluation semantics

of maps and its block-on-uncomputed-values rule makes its evaluation behaviour more similar

to letrec constructs found in lenient[53]5 or lazy[65] languages.

4.1.2 Packages and Libraries

The package is the main structuring and encapsulation unit in Ada (as is the module in Modula).

The role of the package as an encapsulation device is handled in Symmetric Lisp using maps
5 A lenient language is non-strict but not lazy.
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and kappas. Consider the following Ada package declaration;

package stack is --- the specification part
procedure push(x:real);

function pop return real;
end;

package body stack is --- the implementation part
max : constant := 100;
s : array(1..max) of real;
ptr: integer range 0 .. max;
procedure push (x:real) is

< code for push >
end push;

function pop return real is
< code for pop >

end pop

begin

ptr := 0
end stack

The package specification describes the interface between the package body and its users. In

the example, only the two procedures, push and pop are visible outside the package; the stack

representation, s, and the other local variables in the stack are hidden from outside expressions.

The body of the package is executed when the package is declared and is used to initialize local

variables defined in the package.

The items declared in the specification of a package may be used by expressions outside the

package using dot notation:

stack.push(100);

x stack.popo;

The above package could be implemented in Symmetric Lisp by the following map:

stack : (map
priv max : 100

priv s : (map)
priv ptr : 0
push (lambda x)

< code for push >)

pop (lambda (y)

< code for pop >))

Here again, the use of the priv binding in the map restricts the visibility of the names it prefixes.

The above map represents an instance of an abstract data type; the representation type of the
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abstraction is s and the operations defined by the abstraction are push and pop. Users of the

stack do not have access to its representation; users can only manipulate the representation via

procedures push and pop. To access these procedures, one uses notation similar to the one used

in Ada:

(stack.push 100)

x (stack.pop)

Because functions are lexically-scoped, they have access to the private names defined in the

stack even though expressions found outside do not.

The generic package construct allows one to build package templates. In the stack example

given above, for example, the bounds of the stack is a manifest constant; to parameterize this

component, one would express the stack as follows:

generic
max : integer;

package stack is
< same specification as above >

end;
package body stack is

s : array (1 .. max) of integer;

end stack;

To instantiate a stack that is to hold 100 elements, one now writes:

package my-stack is new stack(100)

Note that to build a generic package template not only involves defining a new package dec-

!aration form that allows the programmer to specify which items in the package are to be

parameterized, but also requires a new notation for template instantiation. The basic reason

for this lies in the distinction made between the package program structure and the other data

and program structures found in the language; one cannot combine a package structure with

other available program or data constructs.

In Symmetric Lisp, parametcrized package-like structures can be writLen using the kappa con-

struct. The above generic package could be expressed as:

stack : (kappa ((priv max))
priv s : (map)
priv ptr : 0

push : (lambda (x)
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< code for push >)
pop : (lambda (y)

< code for pop >))

To instantiate a new stack of 100 elements, one writes:

my-stack : (stack 100)

This kappa acts like an abstract type declaration. Creating a new instance of such a type

involves instantiating a map template by kappa application. The map returned by the above

application would have as its first field a name-expression that binds max to 100.

Unlike packages and modules, maps may be nested to any depth; thus, one can build libraries

of package-like structures as well. For example, suppose one wishes to collect the specifications

of all structure types into a single library called structures. Such a library could be written in

Symmetric Lisp as follows:

structures : (map
stack (kappa ((priv max))

< as shown above >)
queue
bounded-buffer

To create a stack of 100 elements, one now evaluates structures. (stack 100).

Note that the structures map is used basically as a data structure containing a number of

named fields; the contents of the fields are kappa objects that have the operational behaviour of

a generic package program structure. An Ada package or a Modula module, unlike a Symmetric

Lisp map, is not a first-class structure: it cannot be built into data structures, nor can it be

passed as arguments to functions.

4.1.3 Process Instantiation

The last two examples have shown how to use maps to model program structures that be-

have like local naming environments. In describing the implementation of these constructs in

Symmetric Lisp, the map's parallel evaluation semantics was secondary to its function as a

naming environment. Note, however, that because elements of a map evaluate concurrently, a

map structure defines a locus of parallel activity wherein each of its elements define a separate

parallel execution thread. Thus, the CSP process-forking statement:

S, 1 S2 S.
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where the Si are arbitrary expressions, translates trivially into the map expression

(map S1 S 2 ... S.)

A discussion on interprocess communication structures is deferred until Section 4.3.

4.1.4 Non-Deterministic Program Constructs

Guarded clauses are used extensively in several concurrent logic programming languages. In

Concurrent Prolog (CP)[55], guards serve as the primary synchronization and control construct.

A (flat) guarded clause is a statement of the form

A - G1 G 2 ... Gm I B, B 2 ... B,.
(m,n > 0)

The commit operator (I) separates the right-hand side of the rule into a guard and a body. A

procedural interpretation of a guarded clause is as follows: the reduction of a process A, using

the above guarded clause suspends until A1 is unifiable with A and the guard's component

elements all evaluate to true. Each of the Gi are constrained to be simple test predicates, e.g.,

predicates to test the type of a variable, or simple logical or relational operators. Because a

guard prevents a process from continuing execution until all of its component test predicates

become satisfied, it is a mechanism for synchronizing process activity in much the same way

that condition variables found in monitor-based languages are used to synchronize access to a

monitor among concurrently executing processes. A guard is an important program structure

for concurrent systems because it can be used to express structured non-determinism and mutual

exclusion.

In general, A may be on the left-hand side of a number of guarded commands:

A - < guard1 > < body, >
A ,- < guard2 > < body2 >

A - < guard, > I < body, >

We can capture the behaviour of a guarded clause system in Symmetric Lisp through use of

open-maps (open-maps were defined in Section 2.2). To represent the above system, one defines

two maps, one to hold the guards and the other to hold the bodies. The it h element in the body

map is a n -ary function whose body is the i th body expression in the guard system. The i' h

element in tie guard map is a nullary procedure whose body is the conjunction of the guards

found in the i'h guarded command in the guard system.
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To execute a guard-system, one defines a function called guard-eval:

guard-oval : (lambda (G B)
M : (open-map.create)
(onto (lambda (g i)

(if (g)
(attach ! i)))

G (iota I (maize G)))

(B[Cacar )))

The function takes two arguments, a guard map, G, containing the value of each of the guard

predicates and a body map, B, containing the body expressions associated with each of the

guards. It defines one local name, M initially bound to an empty open-map. The onto function

(described in Section 2.1.9) applies its function argument pointwise to each of its argument

maps. The onto expression in the above example is equivalent to the following map:

(map
(if (G[11) (attach N ))
(it (G[2J) (attach X 2))

(it (G[(suize G)3) (attach X (maize G))))

Each of the G[i] applications evaluate to a boolean value. Whenever any of the applications

evaluate to true, the index of the guard in the guard map is attached to open-map M. If

there is more than one guard clause that evaluates to true in the guard system, the index first

attached to M is arbitrarily determined since all the guard tests occur in parallel. The last

expression in the guard-oval function, (B [(mcar N) ), applies the i th procedure in B if i is the

value of the first element in open-map M. The application can take place only when an attach

on the open-map occurs; if all the guards fail, no attach is performed and no body expression is

evaluated: the mcar application would wait indefinitely for the empty region found in the first

element of the open-map to be filled.

How does the Symmetric Lisp solution compare with the CP implementation? Consider how

CP uses guard clauses. In Concurrent Prolog, a program is simply a finite set of flat guard

clauses. The CP interpreter repeatedly (and non-deterministically) attempts to reduce some

goal in the resolvent by trying to unify it with some guard clause. In the case where there is no

unifiable clause, e.g., when all guards in the guard-system yield false, the program halts. Note

that unlike sequential Prologs, CP doesn't support a backtracking or failure semantics - once

a goal and clause are chosen for unification and a process has reduced itself using the bindings

produced by the unifier, it cannot later backtrack and acquire new bindings. In the Symmetric
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Lisp formulation given above, there is also no failure semantics - once the guard-eval function

is invoked, the application cannot subsequently be retracted. On the other hand, whereas the

CP program would halt if all guards yielded false, the Symmetric Lisp program would suspend

forever waiting for a result to be returned by the function.

It is straightforward to extend the example to handle termination. We maintain a counter that

is incremented whenever a guard evaluates to false; if during the evaluation of guard-eval, the

size of the counter equals the number of guards, we know that all guards have failed.

guard-eval-with-terminat ion
(lambda (G B)

M : (open-map.create)
fail-count : 0 fail-lock : lock

(onto (lambda (g i)
(if (g)

(attach N i)
(holding fail-lock

(seqmap

(inc! fail-count)
(if (= fail-count (asize G))

(attach M -))))) ; some fencepost value
G (iota I (maize G))))

(if (equal (mcar M) -1)
nil

(B[(ucar N)])))

The body of the holding expression increments the fail-count counter and then tests to see

whether its value is equal to the number of guards in the guard system. If it is, some fencepost

value is attached to M. If all guards fail, the evaluation of (mcar M) will yield this value and the

result of the function is nil; if a guard does evaluate to true, then a valid index will be attached

to M and the corresponding procedure in B will be evaluated.

Notice that the Symmetric Lisp solution was derived from a not-so-obvious application of

empty regions and open-maps. Empty regions (in connection with open-maps) served as an

efficient synchronization mechanism between asynchronously executing processes sharing access

to a communication stream; in this example, however, it was used for a completely unrelated

purpose: it served to explicitly block evaluation of an expression until a user-specified condition

was realized. Because any expression that tries to read an empty region immediately blocks,

we can guarantee that the evaluation of a body expression takes place only if the corresponding

guard is true.



4.1. UNIFORMITY 85

4.1.5 Lazy Data Structures

Languages based on a normal-order (or lazy evaluation) semantics evaluate expressions only

when absolutely necessary, i.e., when the expressions' value is needed in order to continue

with the computation. Among other things, lazy languages can express infinite data structures

such as streams; the elements of such data structures are produced only when a demand is

made for them by a consumer of the stream. Stream structures are very useful in expressing

many different kinds of producer/consumer relationships as well as in modeling history-sensitive

computation. Because of their utility, several non-lazy languages (e.g., MultiLisp and MIT-

Scheme) have built-in support for lazy stream structures through the use of explicit force and

delay-like constructs. A delayed object is not evaluated until some expression forces it; in

particular, if a stream is implemented as a list, one can effectively build infinite streams by

always delaying the cdr of the list. The cdr presumably will be a recursive function call to the

stream producer. When forced, the next element is produced, and another delayed object is

generated that represents the following element in the list.

One can build infinite data structures in Symmetric Lisp by treating an empty region as a

synchronization point between producers and consumers of the data structure. A delayed

object is implemented using empty regions and the seqmap form. An empty region is used as a

suspension - it precedes the expression which is to be delayed. By imposing a serial evaluation

order on map expressions, it is possible to use * as a blocking mechanism that prevents the

evaluation of other expressions. To force a delayed expression, one uses the fill operator to

plug the empty region with a value. Once the hole is plugged, the delayed expression can begin

evaluation. If the delayed expression is a function call to a recursive stream producer, then the

object yielded by evaluation of the forced expression will be another seqmap of the same form.

To make the discussion more concrete, consider the following Miranda[65] expression:

ones = 1 : ones ; : is the Miranda cons operator

This expression defines a stream generator that produces an infinite stream of ones. Because of

the lazy evaluation semantics of the language, however, the stream is generated incrementally

and only on demand.

The ability to serialize evaluation of map structures and the fact that regions may be used as

synchronization points makes it possible to implement lazy evaluation in Symmetric Lisp. For
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example, the above Miranda expression could be written as follows (ignoring issues of syntactic

clarity for the moment):

ones : (kappa )
first : I
suspension *

rest : (last
(seqmap

suspension

(ones))))

A functional-language stream producer that produces its elements on demand is expressed in

Symmetric Lisp as a function that returns a map with three regions: (1) a region named first

that is bound to the first element in the stream, (2) a region called suspension initally bound

to an empty region, and (3) a region named rest that is bound to expression responsible for

producing the remaining elements in the stream. To prevent an infinite recursion, rest is

initially bound to a seqmap whose first element refers to the suspension and whose second

element is a recursive call. Because seqmap begins evaluation of its i + 1" element only after

its ith element has finished evaluating6 , the recursion will not proceed until the empty region

to which the suspension is bound is filled-in. In other words, the region bound to rest will not

get evaluated until a demand for a new element is made. This follows from the fact that the

mlast operator operates only over maps (not seqmaps) and a seqmap form turns into a map

only after all its elements have evaluated. Once such a demand is made, the recursion unfolds

once more only to be stopped again as yet another suspension is encountered.

There are two supporting functions on delayed streams:

first (lambda (stream)
stream. first)

rest (lambda (stream)

(fill stream.suspension t)
stream. rest)

Thus,

(first (ones)) 1
(rest (ones)) (map

first : 1
suspension *

rest : (mlast
(seqmap

suspension

'Where by "finished evaluating", we mean "yielded an object".
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(ones))))

Recall that the fill operator follows a unification-like semantics. If a rest operation is performed

on the same structure twice, fill will still succeed (since the region to be filled contains a

boolean value which is the same as the value that fill is to plug into that region). Because

the equality check performed by fill is atomic, users of delayed objects don't have to pay the

overhead of checking the status of the suspension explicitly. If fill didn't obey a unification-

style semantics, such a check would be necessary to avoid unnecessarily reproducing the rest of

the structure.

Consider another example: The following Miranda function defines an infinite stream of integers

beginning from some n:

intstreams n = n : intstreams (n+l)

One would express this function in Symmetric Lisp as:

intstrams : (lambda (n)
(map

first : n
suspension *

rest : (mlast

(seqmap
suspension

(intstreams (+ n ))))))

It's clear that the Symmetric Lisp formulation of the function is more cumbersome than the

Miranda one. The extra machinery is due primarily to the fact that we are attempting to

support lazy evaluation on top of an eager, "object-oriented" evaluation model. Nonetheless,

the verbosity of the Symmetric Lisp solution could be greatly reduced if a simple macro facility

similar to that found in Common Lisp were available. Given such a macro facility, it would be

easy to define a macro affix that would expand to the above map expression:

(macro affix (el e2)
'(map

first : el
suspension *

rest : (alast
(map

( seqmap

suspension
,e2)))))
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Affix would be a name not bound to any region; the compiler would substitute all references

to affix in the program with the macro body; input expressions would be substituted at the

point where they are used in the macro. Thus, the integer stream now could be written as:

intstreams : (lambda (n)
(affix n (intstreans (+ n 1))))

This solution is similar to one in which semaphores are used as the synchronization device and

P and V like operators regulate access to the end of the structure. In this respect, Symmetric

Lisp's solution is similar in style to one that would be written in a language like MultiLisp. A

lenient language like Id that uses I-structures for synchronization can't efficiently implement

delayed objects because it doesn't have anything similar to the unification-style behaviour

of fill , 7 . One could use a conditional expression to implement delayed objects by having the

producer be modelled as a conditional. The predicate of the conditional would be an I-structure

and the arms of the conditional would contain the delayed expression. The conditional would

evaluate only when a consumer assigns a boolean value to the I-structure that is used as the

predicate. Unfortunately, this solution requires an unnecessary conditional test to be executed

on every stream demand. In addition, implicitly parallel languages that do not have constructs

similar to sequap or I-structures cannot express the explicit synchronization required to delay

the evaluation of future elements in the stream.

The Symmetric Lisp solution is deficient in some respects especially when compared with the

corresponding implementation in a lazy language such as Miranda. Because a Symmetric Lisp

delayed object is represented as an abstraction, built-in operations on ordinary maps (such

as onto or composition) cannot operate on maps implementing delayed expressions; separate

functions that effectively serve the same role would need to be written specially for delayed

structures. Secondly, every demand (even multiple demands on the same element in the struc-

ture) would involve a fill operation to be executed; although the unification check on fill is

atomic, it is nonetheless an overhead (similar to the one incurred in the possible Id solution

described above) that is avoided entirely in an inherently lazy language. Nonetheless, this ex-

ample provides a good illustration of how one can exploit the map's program semantic features

(e.g., the ability to specify the evaluation order of expressions inside a delayed object using

seqmap) to build interesting abstractions (infinite streams).
7Althoigh there is no reason why such a semantics coul- iot be incorporated into the language.
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4.1.6 Object-Based Methods and Inheritance

4.1.6.1 Building Objects

Object-based programming refers to a programming methodology in which the basic computa-

tional agents in a program are thought of as objects that communicate by message-passing. An

object retains local state information, i.e., its lifetime may be greater than the expression that

created it. An object that receives a message can alter its internal state appropriately based

on the content of the message. It is not difficult to support an object-based methodology in

any language that allows expressions to have (potentially) infinite lifetimes; any language that

supports closures, for example, can also be used to build an object-based system. A Symmetric

Lisp map is effectively an object: a map's lifetime may exceed the lifetime of the expression

that creates it and the elements of the map constitute its internal state. Message passing may

be regarded as expression evaluation within a user-specified environment.

Consider the following object-based implementation of a cons-cell:

cons : (kappa (car cdr)
rplaca (lambda (new-car) (set car new-car))
rplacd (lambda (nev-cdr) (set cdr new-cdr)))

The definition

my-cell : (cons X Y)

yields

my-cell : (map

car X
cdr Y
rplaca (lambda (new-car) (set car new-car))

rplacd (lambda (nev-cdr) (set cdr new-cdr)))

Evaluating ny-cell. car yields x. This solution is similar in spirit to one that could be formulated

in a language like ML[51] that allows record fields to contain procedures8 except that, unlike a

simple record, a map has spatial characteristics - map elements may be selected by position as

well as by name; thus, one could also evaluate my-cell l] to yield X.

Example: To illustrate this point more clearly, consider the following example: one needs a

simulator to calculate the response of a flotilla of ships to a series of threats (e.g., squalls,

gAssuming that the record names are recorded in the evaluation environment before evaluation of the lambda

expressions begin.
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sharks, menacing whales, etc.); assume the threats are fast-moving with respect to the flotilla,

so each flotilla member is parked in one place throughout each script.

The flotilla may be represented as a map in which each ship is a named sub-map:

flotilla : (map
grumpy (map ... )
sleepy (map ... )

schwartz : (map ...

Each ship map includes latitude and longitude fields, which can be updated between runs as

appropriate:

(set flotilla.schwartz.lat x)

Structurally, each ship map will contain a response function that can be applied to the descrip-

tion of a threat; the function calculates the appropriate response for this ship. For example, to

compute the schwartz's response to threat Q, one evaluates, (flotilla. schwartz.response Q).

One can determine the response of all ships to threat Q by evaluating:

(onto (lambda (ship)
(ship.response Q))

flotilla)

Because threats are non-uniform (e.g., we consider whales to be more menacing than dolphins),

each will be characterized by values along a different set of axes. It is therefore reasonable to

model each threat as a map:

(map

behaviour threat-catalog.whale
course
mass : ...
velocity

A threat class is a kappa that returns a new instance of the threat:

whale : (kappa (< initialization arguments >)
behaviour : threat-catalog.whale

The behaviour of a threat is determined from a threat-catalog that records the characteristics

common to all instances of a threat.

threat-catalog : (map
whale : (lambda (threat-instance)

(if (and (threat-instance.hungry ... )
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(= threat-instance.course ...

< action >))

In responding to a threat Q, a ship evaluates some expression based on the behaviour of Q.

Thus, the response function in each ship will be structured as:

response : (lambda (threat)
new-threat : (threat.behaviour threat)

< respond to new threat>)

In responding to a threat, a ship may examine the status of any other ship by referring to it by

name; the status of all ships can be determined by iterating over the flotilla map:

(onto (lambda (ship)
< examine ship's status>)

flotilla)

The simulation script could be a map of threat instance applications:

script : (map
(whale < initialization args>)

The simulation function evaluates the response function of every ship to every threat:

sim : (lambda (flotilla-map threat-map)
(onto (lambda (threat)

(onto (lambda (ship)
(ship. respone threat))

flotilla))

script))

Note that, in this formulation, every ship is an object of a fixed number of fields that could

be instantiated from a common template (i.e., we could have defined a ship kappa of which a

ship would be an instance). A ship could have been expressed as a closure, but then it would

no longer be possible to refer to the elements of ship directly by name; one would have to

provide a dispatch function to interface between users of the closure and the closure's contents.

Languages that provide record types could not represent the flotilla map and threat-catalog

map as a record of records because the sim and respond functions need to iterate over the entire

structure; implementing these maps as an array of records would also fail because one also

needs to be able to access any element in the flotilla and threat-catalog by name.

Because ships may update their status position and parallel evaluation is the default, program-

mers need to take care that all responses to one threat are recorded before the next threat is
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handled. Consider a restructuring of the response function so that it now accepts two argu-

ments, one describing the current state and the other, a new threat; it returns a new state,

based on the ship's response to the threat:

response : (lambda (curr-state threat)
new-threat : (threat.behaviour threat)
< respond to new threat using curr-state>)

One can now define a synchronizing version of the simulator; this new version is defined in a style

similar to programs that may be written in other languages supporting non-strict evaluation[40,

53]; the six function is rewritten as a data structure - an array whose i,jth element will be the

response of ship i to threat j. When this data structure is created, each of its components will

be an active computation. Some of these computations will depend on others; in particular,

the value of the Jth entry in row i (the response of ship i to threat j) will depend on the value

of the j - 1st (the response of ship i to threat j - 1) entry in the same row. The non-strict

map-access rules insure that each computation waits until the value it needs is available, and

then proceeds. The array of computations quiesces, column by column, into an array of data

values. The array can be specified as follows:

sim : (generate (i (iota I (msize script)))

(generate (j (iota I (msize flotilla)))
(if (equal j 1)

(flotilla Ci]. response <initial-state> script[j])
(flotilla~i] .response sim[ij-1] script[j ))))

4.1.6.2 Inheritance

Object-oriented languages supporting inheritance are based on a semantic model in which data

is organized into a class hierarchy. Data at any level of the hierarchy inherit all the attributes

of data higher up in the hierarchy. Every data object is a member of some class; a class can be

thought of as an object template. Inheritance relations are specified by the way classes relate

to one another: objects instantiated from a class A which is a subclass of class B inherit all

the procedures (or methods) and local variables (or instance variables) found in B that are not

defined in A. An object, upon receiving a message, dispatches it to the appropriate procedure in

its hierarchy which may then proceed to evaluate it. Each object retains local state information

that may be used by any of the methods found in its class hierarchy.
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There are several competing paradigms for general object-based programming: in Simula-

67[23] instances are similar to records with function-valued components and message-passing

is realized as field selection and application over these records; Smalltalk[38] (followed by

CommonLoops[14l and Flavors[39]) treats message-passing as function call. The first argument

in a message is the name of the method to be invoked - an object determines the location of the

method by dynamically searching its class hierarchy and applies the method to the remainder

of the message. Amber[16, 17] also models objects as records, but expresses inheritance as sub-

type relations among these records; one can view Amber as a natural object-oriented extension

of ML.

Symmetric Lisp views objects as environments, and inheritance as specification of an environ-

ment evaluation path. An object will be defined as a map with multi-layer regions; the order

of the layers in a region specifies the inheritance hierarchy of the instance variables or methods

that the region represents.

In thinking of objects as maps, we see that an instance of a subclass in an inheritance hierarchy

is simply an environment that is the "fusion" of the environments defined by the associated

instances of all its superclasses. The inheritance hierarchy determines how the environment

is to be constructed: nameclashes between a subclass instance and a superclass instance are

always resolved in favour of the subclass. Maps allow us to specify objects as environments;

multi-layer regions allow us to specify the inheritance hierarchy directly by providing a facility

to "shadow" names defined in different classes found along an inheritance chain.

Consider a simple example: rectangle is a subclass of graphics-obj ect. Graphics-obj ect defines

two methods: set-color and set-name, and defines two instance variables: color and name.

Rectangle is a class that defines four methods: set-vidth, set-height, set-name and area, and

defines three instance variables: width, height and name.

rectangle

(map

make-rectangle : (lambda )
(layer (rectangle-instance-vars)

rectangle-methods

(graphics-object.make-graphics-object)))

rectangle-instance-vars : (kappa ()
width : <default-value>
height : <default-value>
name : <default-value>)

rectangle-methods : (map
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set-width (lambda (rectangle-instance new-width)

set-height (lambda (rectangle-instance new-height)

set-name : (lambda (rectangle-instance new-height)

area : (lambda (rectangle-instance) ...
graphics-object

(map
make-graphics-object (lambda ()

(layer (graphics-object-instance-vars)

graphics-methods))
graphics-instance-vars : (kappa )

color <default-value>

name <default-value>)
graphics-methods : (map

set-color (lambda (graphics-object-instance new-cr'or)

set-name (lambda (graphics-object-instance new-name)

The object returned by make-graphics-object is a map:

(map
color <default-value>

name <default-value>
set-color (lambda ... ))
set-name (lambda (...)))

The object returned by make-rectangle then becomes the map:

(map

width <default-value>

height <default-value>
name : <default-value for name in rectangle> I

<default-value for name in graphics-object>
set-width (lambda (...))
set-height (lambda (...))
set-name : <method in the rectangle class> I

<method in the graphics-object class>
color : <default-value>
set-color : (lambda (...)))

Note that because maps are always shared, never copied, the maps defining rectangle's methods

and graphic-object's methods are references to, not copies of, the methods defined in their

respective classes. The objects returned by the make-rectangle and make-graphics-object

functions differ from a typical Smalltalk object in that they contain a direct reference to the
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methods defined by their defining class; like Smalltalk, however, Symmetric Lisp's map-sharing

semantics dictates that any change to a method be seen by all extant instances of the class in

which the method is found.

Message-passing in this model is simply expression evaluation within the object; it is seman-

tically no different from a record selection operation. If my-rectangle is bound to the above

map, then the expression

(my-rectangle. < exp >)

evaluates exp using the instance variables and methods defined in my-rectangle; if the identifier

name or set-name is referred to in exp, then the value of identifier will be its value as defined by

rectangle.

For example, evaluating my-rectangle.height returns the value bound to the height variable

in object my-rectangle; the expression

(my-rectangle.set-color my-rectangle "blue")

sets my-rectangle's color to be "blue". The expression

(my-rectangle.set-name my-rectangle "fool)

applies the set-name method defined in rectangle to arguments my-rectangle and "foo". The

set-name method defined by graphics-object. is superseded with the one defined by rectangle.

The Smalltalk-style expression

(send object method args)

is, therefore, represented in Symmetric Lisp as

(object.method args)

Note that this is a parallel object-based system: many objects may send (and receive) messages

to (and from) one another concurrently.

Multiple-inheritance systems are an extension of simple inheritance hierarchies in which an

object can belong to several incomparable superclasses; whereas the subclass relation in a simple

inheritance scheme is constrained to form a tree, the subclass relation in a multiple-inheritance

system can form a directed acylic graph. One can express a simple form of multiple-inheritance

in this model by flattening out the dependency graph at the time of object creation. For

example suppose that polygon-object is also a superclass of rectangle, but is not a superclass

of graphics-object. In other words, the rectangle class is to inherit the instance variables and
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methods from both graphics-object and polygon-object. If the make-rectangle function were

redefined to be:

make-rectangle : (lambda )
(layer (rectangle-instance-vars)

rectangle-methods
(polygon-obj oct. make-polygon-obj oct)

(graphics-object .make-graphics-object)))

then all name clashes between graphics-object and polygon-obj ect that occur in the evaluation

of messages sent to a rectangle instance are resolved in favour of polygon-obj act. This approach

to handling multiple-inheritance is similar to the solution adopted by CommonLoops[i4].

Symmetric Lisp views the inheritance problem as essentially a namespace management prob-

lem; the inheritarce hierarchy specifies a namespace that is composed from a collection of

environments that may define different bindings for the same name. Any system that allows

the user to build an evaluation environment in this way can also support an inheritance-based

program methodology. For example, the class construct of Simula and Smalltalk or the deffia-

vor structure found in Zetalisp specify an evaluation environment in much the same way that a

Symmetric Lisp map does. One can explictly build an environment chain (or tree) in Smalltalk

(or ZetaLisp) using the notion of a superclass (or flavor); this ability is captured in Symmetric

Lisp directly through layered regions that represent namespace hierarchies. One can build an

inheritance hierarchy in Amber by viewing records as local environments and using subtype

relations to position different records within the hierarchy. Symmetric Lisp, like Smaltalk

and unlike Amber, does not employ type inference to determine inheritance relations among

different objects; superclass/subclass relations are explicitly notated in the object template.

4.2 Modularity

The previous section described how a number of diverse, well-known program structures can

be understood in terms of map definition and evaluation. The motivation for studying the

symmetric model stems not just from our interest in understanding how different program

forms can be modeled, but in our intuition that these structures can be synthesized to produce

new program constructs and associated new paradigms. This section discusses one such modular

program structure and its implementation in Symmetric Lisp.
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Modularity refers to the synthesis of big structures out of separate smaller structures. Con-

cretely, the idea involves constraints on information flow or access between pieces, which are

most often named groups of named procedure definitions or object declarations. A particu-

laxly interesting kind of modularity is recursive modularity, in which smaller components are

structurally the same as the elements of which they are a part. The symmetric programming

model supports recursive modularity: maps may contain sub-maps nested to any depth as well;

the structure of any component map i. identical to the structure of the whole. Modularity in

a symmetric language also implies parallelism: whenever two program pieces are hooked to-

gether, they execute concurrently. Most importantly, the modular, parallel progru structure

is in fact not just a program structure, but a data object that can be manipulated according

to the normal rules for object manipulation.

Consider the following problem: given a large and complicated mass of input data arriving on

different data streams, one requires a system that performs two separate but related tasks: (1)

It will act as a heuristic database, ready to accept user queries either about the status of a

particular data-stream or the likelihood of some more complex phenomenon given the current

state. (2) It will act as a monitor and alarm system, posting notices when significant state-

changes occur. In determining the likelihood of more complex states, the system might use

quantitative tests, heuristic decision procedures (as rule-based systems do, for example), or any

mix of the two. Systems of this sort have wide applicability in the field of heuristic monitors

and databases.

One useful organizational paradigm for systems of this sort is the "cooperating experts" or

"blackboard" model first used in the implementation of the Heaxsay-II knowledge-based system[29].

In this paradigm, the application domain is divided into a number of specialized sub-domains,

each of which is under the supervision of some expert. Experts are free to transmit hypotheses

and results to one another and information transmitted by one expert may be shared by several

others. The model lends itself to a simple parallel formulation; a cooperating experts-based

program in which individual experts are viewed as long-lived, concurrently executing processes

is referred to as a concurrent knowledge daemon.

A parallel process lattice is a natural organization structure for a concurrent knowledge daemon.

A parallel process lattice is a hierarchical network of nodes; each node represents a concurrently

executing process, and communication between nodes follows the edges in the network. It is
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assumed that the bottom rung in the network is wired directly to an external sensor, and

performs initial data processing and filtering, e.g., it may be connected to a terminal or tty-

line, a tactile sensor, or a blood-pressure monitor. Processes at higher levels in the lattice

represent more complex "experts" that are responsible for monitoring and analyzing more

complex states. In a program to monitor patients in a post-operative cardiac intensive-caxe

unit (ICU), for example, low-level nodes would connect to blood-loss and blood-gain devices;

they and other bottom-rung nodes converse with a higher-level node that calculates total fluid

volume, which communicates with a higher-level node monitoring the likelihood of hypovolemia

(a particular clinically-significant state) and so on.

A process-lattice is a bi-directional communication structure. Data filter up; queries filter

down. An intermediate-level node reads data from the nodes below it; if its own state changes

as a consequence, it communicates its new state to its own superior nodes. Nodes report

their status on the display only when something "interesting" has happened or is likely to.

The user may on the other hand enter a query at any time: a query amounts in effect to a

question of the form "what is the current status of node n, and why?" Say the user of an ICU

knowledge daemon suspects the presence of cardiac tamponade, but the system is reporting

nothing on the topic: the user queries the status of the "cardiac tamponade" node, which may

itself lack recent data because its inferior nodes haven't recently changed state; it propagates

the query downwards, and eventually reports to the user. This sort of structure has been

designed and tested in Linda[19] on a proto-type basis for a small automobile-traffic monitor

and a monitor for patients in an ICU, but the formulation in Symmetric Lisp differs from the

Linda implementation in some important ways as described below.

The process lattice is a modular, parallel program structure. To implement it well requires

support for multi-streams, long-lived processes with externally-visible state, processes repre-

senting environments within which queries made by external processes can be evaluated, and

the capability to generate processes dynamically. (Recall that multi-streams are distributed

data structures to which many processes can append and read from simultaneously.) Long-

lived processes are object-like processes whose internal state can be examined freely and from

the outside. Symmetric Lisp is a good language to implement such a structure: because a Sym-

metric Lisp program is in fact a data object, one can structure the lattice as a map in which

each map element corresponds to some node in the lattice. Each node in the lattice is itself a
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Figure 4 : A Subset of a Process Lattice for ICU Monitoring

map9 ; these nodes play a dual role: (1) they are perpetually active processes in the sense that

they are constantly responding to queries and generating hypotheses based on current state

information and (2) they are full-fledged data objects in the sense that their internal state may

be examined by, and passed as arguments to, other processes.

4.2.1 The Structure of a Process Lattice

Consider the small subset of a process lattice for ICU monitoring shown in Figure 4.

The process lattice is a map:

proc-lattice : (map
systolic-bp (map ... )

heart-rat. (map ... )

septic-shock : (map ...)

hypovolemia (map ...)

9 Hence, the process lattice exhibits recursive modularity.
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hypervolemia : (map ... ))

What should be the structure of a lattice node? To answer this question, one must first

determine how data and queries are communicated between nodes. Inter-node communication

should be as flexible and transparent as possible; in a communication-bound system like the

process lattice, rigid or cumbersome protocols that require nodes to format complex query and

data messages would make for an especially inefficient and unappealing program structure.

Efficient realization of the process lattice requires an inter-process communication model in

which data and query transmission is highly uniform and transparent; ideally, communication

should involve little, if any, synchronization between node processes. The open-map abstraction

discussed in Section 2.2 defines a flexible communication structure since it can be treated as a

multi-stream.

One useful way of structuring communication in a process lattice is to have superior nodes

directly examine the state of an inferior upon notification that a state change has taken place.

When a new data value is produced, a node attaches a signal to a local multi-stream indicating

this fact; monitors found in nodes at higher levels of the lattice are then free to recompute a

new state for their node based on the newly updated states of their inferiors. Each node map

contains the following fields:

query-map (open-map.create)
new-data? (open-map.create)

To notify a superior that a new state has been computed, an inferior executes

(attach new-data? t)

Because the contents of a map can be examined from the outside, superior nodes can directly

examine the state of their inferiors without the inferior's knowledge. Since inferiors are unaware

of who their superiors are, one can dynamically add new nodes on top of the lattice without

altering the existing structure. Assuming that each node maintains a variable, state, a superior

node can find the current state value of an inferior i by evaluating i.state.

To send a query down to its inferiors, a node would execute

(onto (lambda (inferior-node)

(attach inferior-node.query-Rap t))

inferiors) ;;; inferiors is a map of the node's inferiors
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A query is basically a signal indicating that a superior wishes the subordinate to compute a

new state. The query-map is under constant surveillance; when a query is received, the inferior

node propagates the query down to its node's inferiors. A node that has no inferiors simply

recomputes a new-state and attaches a signal to its new-data? map. One can structure such a

monitor az follows:

query-monitor : (lambda (query-map)
(seqmap

query : (mcar query-map)
(if (empty? inferiors)

(compute-now-state)

(onto (lambda (inferior-node)
(attach inferior-node.query-map t))

inferiors))

(query-monitor (mcdr query-map))))

The data-map monitor evaluates a new state based on the updated information of its node's

inferiors. The structure of a data monitor might look something like

data-monitor : (onto (lambda (inferior-node)

node-monitor : (lambda (new-data?)

(seqmap
new-node-state :(mcar new-data?)

(compute-new-state new-node-state)
(node-monitor (mcdr new-data?))))

(node-monitor inferior-node.new-data?))

inferiors)

The compute-new-state function computes a new-state and attaches a signal onto the local

new-data? map.

The data monitor is actually a map of monitors with each sub-monitor dedicated to surveying

state changes in one of the node's inferiors. A sub-monitor waits for its particular inferior to

compute a new state value and then invokes the node's decision procedure, compute-new-state,

passing the newly updated inferior node as the argument. Sub-monitors evaluate in parallel;

monitors from different nodes can simultaneously examine the same inferior.

Programmers have great latitude in implementing a node's decision procedure. Upon receiving

word that an inferior has changed state, a node may immediately compute a new state, query

some (or all) of its other inferiors to recompute their states, or it may choose to ignore the new

information entirely. Suppose that each node shares access to a global system clock maintained

in a time map. Each node records the time of its last update in a update-time field. When a
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decision procedure is invoked, it may choose to query other nodes if they have not been active

recently. For example, if the decision procedure for hypovolemia is invoked because of new data

produced by the systolic-bp node, it may choose to query the hr node if no new data on heart

rate has been recently received:

(if (> time.current (+ hr.update-time delta))

(attach hr.query t))

time.current is the global time; hr.update-tine is the time at which the heart rate was last

noted and delta is a tolerance factor. The heart rate node will recompute its state upon

receiving the query. The hypovolemia process monitoring heart-rate will subsequently invoke

the hypovolemia decision procedure when a new heart-rate is computed.

The non-strict map evaluation rule makes it particularly convenient to monitor the evolution of

objects of various kinds. For example, suppose that the user wishes to record how many times

in total a node changes status; one could evaluate the following expression to perform this task:

state-monitor :

(generate (i proc-lattice)
(map

state-counter 0
record-change (lambda (new-data?)

current-state i.state

(seqap
new-state? (scar new-data?)
(if (<> current-state now-state?)

(set state-counter (1+ state-counter)))

(record-change (mcdr new-data?))))

(generate (j (iota 1 (mSize proc-lattice)))

(record-change proc-lattice [j .new-data?))))

Because the process lattice has spatial characteristics, one can iterate over its elements as one

would an axray or list. The state-monitor is a map containing a map for each node in the

lattice. Each component map consists of two fields: a state counter and a daemon function

that waits for a state change on the node being monitored; whenever a change occurs, the

counter for that node is incremented. As was the case in the previous example, this monitor

also runs indefinitely and can examine the behaviour of the process lattice and the evolution

of lattice nodes without disturbing the core program. (Of course, monitoring the uehaviour in

realtime requires that the underlying scheduler guarantee that a monitor process will not miss a
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state change because of scheduling constraints. We don't address the process scheduling issues

here.)

The dynamic nature of the process lattice is especially useful given that it is intended to operate

over a long period and in an interactive setting. For example, suppose the user wishes to monitor

the values of septic shock, hypovolemia and hypervolemia using some new higher-level decision

procedure. He would evaluate the expression,

(f proc-lattice. hypovolemia
proc-lattice.hypervolemia

proc-lattice. septic-shock)

where f is the decision procedure. f may be a monitor that looks like

f : (kappa (hypovolesia hypervolemia septic-shock)
( loop forever monitoring for interesting results))

Once installed, f runs indefinitely, informing the user whenever some particular combination

of these three manifestations occurs. Because f is represented as a kappa, and kappas expand

upon application into maps, f's application can be under evaluation even as other expressions

are attached to the interpreter. The process lattice structure itself is unaware of the existence

of f and need not be altered to accomodate it. The ICU process lattice program can be

examined from the outside (by f) precisely because it has the semantics of a data object.

Notice that Symmetric Lisp's support for recursive modularity makes it possible to incorporate

the lattice program as an element of an ICU-interpreter environment; thus, we can potentially

have multiple incarnations of different process lattices monitoring different patients:

ICU-interpreter : (map
proc-lattice-I (map

systolic-bp

heart-rate

proc-lattice-2 (map...

proc-lattice-k (map ...

The ICU-interpreter encapsulates k process lattices; each lattice would be responsible for

monitoring different input streams.

How easily can the proccss lattice be implemented in other modular, parallel languages? Parallel

languages such as Ada or CSP implement process communication using explicit rendevous points

and do not support dynamic process instantiation. By requiring communicating processes to
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synchronize at a specified send/receive entry point, an Ada or CSP program cannot implement

the asynchronous communication behaviour of the Symmetric Lisp version of the process lattice.

Unlike a distributed data structure scheme that allows the programmer to decouple the task of

process creation from the job of process communication, every Ada task (or CSP process) must

know the identity of all other tasks (or processes) with whom it needs to communicate at the

time that it is defined. The requirement that programs must exhibit a static process structure

also prevents the lattice from being monitored by dynamically-created external processes.

The Symmetric Lisp implementation differs from the Linda one in one major respect. Because

a Linda process is not a data structure, its internal state is not visible for inspection by other

processes; the elements of a process state which axe to be made visible to other processes must

be dropped explicitly into tuple-space. Thus, unlike a Symmetric Lisp map, a Linda process

whose state is to be visible to the outside must inject the necessary elements into tuple-space

where they may be subsequently read; Linda does not support transparent access to a process

state.

Non-strict parallel languages such as MultiLisp[40], Id[7] or SAL[4] can presumably also be used

to implement the a process lattice. A process lattice node would be implemented in MultiLisp

using futures, in Id using managers[5], and in SAL using Actors. Process communication in

MultiLisp is achieved using futures and semaphores; Id expressions communicate results to other

concurrently executing expressions via the internal state held by a manager; message passing

is used in SAL to implement process communication. Because neither a MultiLisp future, an

Id manager, or a SAL actor, however, is a data structure in the sense that a Symmetric Lisp

map is, we would expect the formulation of the process lattice in these languages to be quite

different from the one given here.

4.3 Maps as Parallel Program Objects

The evaluation model for maps we have considered in this thesis treats a map program a parallel

program in which each region defines a separate parallel thread. Names declared in a map serve

as synchronization points; an expression requiring the value of a name synchronizes with the

expression producing the name's binding-value. This section examines the role of maps as

parallel program structures; the discussion is primarily concerned with explicit concurrency of
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the kind found in parallel simulations or resource management applications.

4.3.1 Pipeline-Based Prime Number Generation

As a first example, consider a pipeline-based prime number generator. In such an algorithm,

we represent the prime number filtering process as a pipeline in which each pipeline component

represents a process dedicated to filtering out all multiples of a particular prime number; each

successive component of the pipeline sees only those elements that are not multiples of primes

seen earlier in the pipe. Whenever the current last component in the pipeline sees a number

that is not a multiple of the prime it represents (i.e., whenever it encounters a new prime), it

extends the pipeline by adding a new component process responsible for filtering out multiples

of this new prime.

This formulation is basically a systolic-style implementation of the standard sieve of Erathos-

thenes solution. In the abstract, we can consider a systolic program as program with a particular

shape: a parallel algorithm is embodied in a graph that captures an efficient traffic pattern of

data and results, and the program itself embodies the graph. In the prime number generator

given below, each element of the pipeline represents a systolic program module: data is trans-

mitted along the pipeline in the same way that information is transmitted along the components

of a systolic array.

The code for the sieve is given below:

primes : (lamb4a (size n)
prime-list : (generate (i (iota I n)) *)
(fill prime-list [] t)
(fill prime-list[2] t)
make-integer-stream : (lambda (m n)

int-stream : (open-map.create)

loop : (lambda (stream a)
(if (> a n)

stream

(seqmap
(attach stream m)

(loop stream (1+ a) n))))
(loop int-stream m))

pipeline-element :

(lambda (my-prime sieve)

outbox : (open-aap.create)

end-of-pipe : t
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loop (lambda (sieve)
next-candidate : (mcar sieve)
(if (multiple? next-candidate my-prime)

(seqmap
(fill prime-list [next-candidate) nil)
(loop (mcdr sieve)))

(if end-of-pipe?
(seqmap

(fill prime-list [next-candidate] t)
(pipeline-element next-candidate outbox)

(set end-of-pipe nil)

(loop (mcdr sieve)))

(seqmap
(attach outbox next-candidate)
(loop (mcdr sieve))))))

(loop sieve))

(pipeline-element 2 (make-integer-stream 3 size))
prime-list)

The function primes takes as its input two integers, the first indicating the size of the integer

sequence to be examined and the second indicating the number of primes desired in that se-

quence. (We assume that size > n.) It defines three bindings: the first is the prime-list whose

i th element will be t if i is prime and nil otherwise; the second binding defines an integer stream

producer that, given integers m and n, returns an open-map containing elements m through n;

the third binding defines the pipeline-element function. This function implements the sieve.

It defines three bindings: an outbox which represents the elements not filtered by this process

(i.e., the elements that are not multiples of the prime this process represents), an end-of-pipe

flag that is true if this process is the last element in the pipeline, and false otherwise and a

loop function. The loop function scans down the input sieve; if the first number in the sieve

is a multiple of its prime, it continues looping; if it is not, then there are two possibilities. If

the loop is part of an element that happens to be the last component in the pipeline, then the

number it has just scanned must be a prime; in this case, it records the fact in the prime-list,

adds a new pipeline element whose filter agent is the prime number just scanned, sets its own

end-of-pipe flag to nil and, finally, recurses (in that order). If the function is not part of the last

pipeline element, it attaches the scanned number to its outbox and recurses; the loop function

found in the pipeline element to the right of this component uses this outbox as its sieve.

We illustrate this process in Figure 5. The list of primes in the input set are those elements of

prime-list with value t. Note that we haven't considered termination of the loop processes;
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after all elements in the input set have been processed, each loop process will eventually quiesce

waiting for a new number to be attached to its input sieve. To terminate the loop processes,

we would have to add a termination signal to each input sieve.

The function returns the prime-list as its result; the caller can examine whether a given number

is prime or not by using the number to index into the map returned; the semantics of empty

regions will cause the accessing expression to block until a value (either t or nil) is filled in by

the appropriate process.

There are a number of simple variations on this program that are easily accomodated. We

could have, for example, designed the program so that it generates all primes in the given list.

To get this behaviour, we would have represented the prime-list as an open-map (rather than

a flat map of empty-regions). Whenever a prime is encountered, it would be attached to this

list. The basic loop structure of the pipeline-element function would remain unchanged.

4.3.2 Implementing a Process Network

We expand upon the systolic-array style paradigm introduced in the previous example by ex-

amining the implementation of more general process networks. Consider how one might express

the Hamming numbers problem in Symmetric Lisp - the task is to print in ascending order

all numbers of the form 2a * 36 * 5c , for a, b, c > 0. One nice formulation of this problem is in

terms of a network of communicating processes. The network, shown in figure 6, consists of five

nodes: two merge gates and three stream generators. The three generators simply multiply the

elements on the output stream by a constant (either 2,3 or 5) and feed the result back to one

of the merge gates. The merge boxes take two streams as arguments and produce an ordered

stream as their result. It is not difficult to convince oneself that the elements on the output

stream generated by the second merge gate (which is also the input stream for the three stream

generators) is an ascending stream of Hamming numbers.

Can one implement a cyclic network of this kind in Symmetric Lisp? A simple and elegant

solution to this problem can be expressed in functional languages supporting infinite lists; the

solution to the Hamming problem in Miranda can be expressed succintly as follows:

hamming = I : merge (f 2) (merge (f 3) (f 6))
where

f a = [ n*a I n <- hamming )
merge (a:x) (b:y) = a : merge x (b:y), a < b
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It is possible to translate the Miranda-style solution into an equivalent (functional) Symmetric

Lisp program either using the generate comprehension form or by building stream generators

(in the style given in Section 4.1.5) for the various streams defined by the different applications

of f. Another possibility, and the one we examine here, is to build the streams explicitly as we

did in the prime number example.

As in the previous example, we can use open-maps to represent the communication channels;

producers and consumers automatically synchronize because of the semantics of empty regions.

Because the language contains facilities for explicitly synchronizing concurrently executing pro-

cesses via data structure access, it is possible to implement a deadlock-free cyclic network of

this kind.

The basic idea in the Symmetric Lisp implementation is to represent streams as open-maps that

are extended by appropriate stream generators which monitor the presence of new elements on

the output stream.

ham : (lambda )

2-stream (open-map.create)

3-stream (open-map.create)

5-stream (open-map.create)

hawing-stream : (open-ap.create)

intermediate-stream : (open-map.create)

(attach hamming-stream 1)
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multiply : (lambda (stream)
(seqmap

(sap
(attach 2-stream (s 2 (mcar stream)))
(attach 3-stream (* 3 (mcar stream)))

(attach 5-stream (* 5 (mcar stream))))

(multiply (mcdr stream))))

(multiply hamming-stream)

merge (lambda (stream-i stream-2 output-stream)

hd-1 (scar stream-i)

hd-2 (rcar stream-2)

(cond ((= hd-1 hd-2)

(seqmap

(attach output-stream hd-i)
(merge (mcdr stream-i) (mcdr stream-2) output-stream)))

((> hd-1 hd-2)

(seqmap
(attach output-stream hd-2)
(merge stream-i (mcdr stream-2) output-stream)))

((< hd-1 hd-2)

(s eqmap
(attach output-stream hd-1)

(merge (mcdr stream-i) stream-2) output-stream))))
(merge 3-strean 5-strean intermediate-stream)
(merge 2-stream intermediate-stream hamming-stream)
hamming-stream)

The multiply function acts as a stream multipler that multiplies all elements of the hamming

stream by 2, 3 and 5, attaching the results to the appropriate output stream (either 2-stream,

3-stream or 5-stream). The value of the hamming stream is determined by the merge of 2-stream

with the merge of 3-stream and 5-stream. The merge function does a sort on the elements of its

two input streams attaching the elements of the sort to its third argument. By enclosing the

attach operation and the recursive call inside a seqmap when performing a merge, we guarantee

that the ordering of the output stream is consistent with the relative order of the input streams.

Process synchronization takes place whenever a stream multiplier (in the multiply function)

or a merge operator executes an mcar operation. If the element referenced is an empty region,

the operation suspends until a new element is attached. In the case of a multiplier, it is only

when a new element is added to the hamming stream that the multiplication proceeds and a

new element is attached to the specific multiplier stream; in the case of the merge function, it

is only when a new element is added to the appropriate multiplier stream that the hamming

stream is extended.
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4.3.3 A Dataflow Simulation

We now consider a further generalization of the two previous examples. We would like to

consider an emulation device for static dataflow graphs"° . The Symmetric Lisp emulator is

to be faithful to the semantics of the dataflow actors found in the static dataflow graph with

respect to the synchronization and firing rules they obey.

There are two reasons why Symmetric Lisp's synchronization and process semantics make it

a good tool for modeling concurrent systems. First, the non-strict semantics of maps means

that lightweight, long-lived daemon processes are natural organization structures. Secondly,

the fact that processes can read and write common data streams using empty regions as the

basic sychronization mechanism means that one can directly model general producer/consumer

relationships; in particular, one can directly model the dataflow dependencies that exist between

actors in a dataflow graph.

Nodes in the abstract dataflow graph are represented as perpetually running process monitors

and edges are implemented as open-maps. Each process watches the open-maps corresponding

to the input edges for the node it represents and computes a result based on input values found

in these map streams. These results are then written to the open-map corresponding to the

node's output edge. Monitors execute asynchronously (in the same way that actors in a real

dataflow system do). In the particular translation given here, acknowledgement arcs between

nodes are not used: data written onto open-maps are queued; the translation guarantees that

the order in which output values are emitted by a node is preserved when writing onto the

appropriate edge by explicitly serializing the writing of an output value with the reading of new

inputs11.

Consider the following program fragment written in Val[2] to compute the factorial of a number:

Function Factorial (n : integer returns integer)
for i: integer := 0;

p: integer := 1;
do if i= n then p

else
iter i := i + 1;

1 For our purposes, a static data flow language is one in which the structure of the base language graphs is
fixed at compile time; there are no function application operators that can instantiate new copies of function
graphs at runtime. Iteration is supported by allowing cyclic graphs to be constructed. Readers unfamilar with
the datafiow model of computation should consult [6] which gives a comprehensive introduction to the subject.

"In other words, this simulation assumes unlimited queuing on edges.
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p:= p*i
enditer

endif
endfor

end fun

The iter construct creates a new "local" environment for i and p and evaluates the expressions

to which they are bound in the context of this new environment.

A possible translation of this function into an abstract dataflow graph representation is shown

in Figure 7. Edges entering into the sides of actors are signals - they generate boolean tokens.

TRUE and FALSE gates pass their input only if the current value on their signal line is either

true or false, resp.; they consume their input otherwise.

The corresponding representation in Symmetric Lisp is given below:

factorial :
(lambda (n)

i (open-map.create) (attach i 0) ; variable i.
p (open-map.create) (attach p 1) ; variable p.

answer *

edgel (open-map.create) ; link between = and true and false gates.
edge2 (open-map.create) ; link between first false gate and +.

edge3 (open-nap.create) ; link between second false gate and *.

actors (map
=-actor ((lambda (i p)

(sequap
(if (= (mcar i) (-car p))

(attach odgel "true")
(attach edgel "false"))

(=-actor (scdr i) (mcdr p))))

i p)

true-gate ((lambda (p edgel)

(sequap
(if (= (scar odgel) "true")

(fill answer (scar p)))
(true-gate (mcdr p) (mcdr edgel))))

p edgel)
false-gate-1 ((lambda (i edgel)

(sequap
(if (= (near edgel) "false")

(attach edge2 (acar i)))

(false-gate-1 (mcdr i) (ucdr edgel))))

i edgel)

false-gate-2 : ((lambda (p edgel)
(sequap
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Figure 7: A Static Dataflow Graph for Factorial
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(if (= (scar edgel) "false")
(attach edge3 (mcar p)))

(false-gate-2 (mcdr p) (mcdr edge2))))

p edgel)
+-actor ((lambda (edge2)

(seqaap
current-i : (ucar edge3)
(attach i (1+ current-i))
(+-actor (mcdr edge2))))

edge3)
*-actor ((lambda (edge3 i)

(s sqmap
(attach p (* (scar edge3) (scar i)))
(*-actor (mcdr edge3) (mcdr i))))

edge4 i))

answer)

The translation of factorial into a Symmetric Lisp-style dataflow graph representation is naive

and could be optimized considerably. We could have, for example, abstracted the code for the

false gates into a lambda expression:

false-gate : (lambda (input signal result)
(s eqmap

(if (= (mcar signal) "false")
(attach result (mcar input)))

(false-gate (mcdr input) (acdx signal))))

false-gate-I could now be bound to the application:

(false-gate i edgel edge2)

false-gate-2 could be rewritten similarly. In effect, one could have written a library of actor

templates that could be simply invoked with the appropriate arguments as defined by the

structure of the graph.

Every edge in the abstract graph translates into an open-map; every actor translates into a

daemon process. Each daemon process executes the same process repeatedly: (1) wait for

new input, (2) attach result to the output stream and (3) recurse waiting for the new input

tokens. For example, the +-actor waits for a value (a new value for i) to be attached to edge2,

its input arc, by false-gate-1. Once a value is written, it increments it (this corresponds to

the statement i := i + 1 in the Val program) and attaches the result to the output stream

corresponding to i and waits again for new input. Despite the fact that all actors and gates can

run asynchronously, the serialization introduced by the sequap form guarantees that an output
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will not be produced until the corresponding inputs are received. Moreover, because every edge

has only one producer, it is easy to see that merging of output values from different nodes

cannot occur. The final result is given by the true gate which evaluates the fill expression

that stores the result into answer. The true gate is activated only when all iterations have

completed, i.e., only when i = p.

How expensive is it to create an open-map for each edge? An open-map is a three-element

structure; operations on open-maps are shared among all its instantiations. Viewed in this

light, we conjecture that open-maps are not an expensive representation for edges in the dataflow

graph. Of course, this conjecture can be validated only by experimentation which we leave as

a topic for future investigation.

Note that the names introduced in the Symmetric Lisp version of the Val program are not

strictly necessary; a mechanical translator could just as well have substituted index references

for the name references introduced above. For example, all references to the open-map, edgel,

could be replaced with the expression (apply-env) (3]. (Recall that apply-env returns the map

address in which it is evaluated; in this example, this would be the map generated by the

application of the factorial function. The third element in the application map is the open-map

bound to the name edgel.) This same transformation would be applica Ale to each named actor

as well. So far as the translator is concerned, the Symmetric Lisp map is simply a data structure

containing open-maps, functions and evaluating expressions, all of whom can be addressed by

their map index. The translation methodology sketched here is applicable to not just dataflow

programs: any concurrent system (e.g., synchronous systolic array programs, message-passing

systems, RPC-based models, etc.) could be modeled in the same way so long as the necessary

synchronization constraints and evaluation rules of the source language expressions are well-

understood.

4.3.4 Resource Management

It has long been known that arbitrary side-effecting computation in a parallel programming

language can lead to uncontrolled non-determinism. While unrestricted use of non-determinism

makes it impossible to effectively reason about the behaviour of programs, constrained use

of non-determinism can lead to novel and interesting applications. Several of the examples

presented in this chapter, most notably the process lattice, depend crucially on the ability to
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write non-determinate code. Non-determinism is also especially useful in expressing resource

manangement problems. A resource manager controls access to one or more resources shared

by concurrently executing processes. Database transaction systems or operating systems are

two domains where resource managers are typically required.

The basic approach to writing a resource manager in Symmetric Lisp is straightforward: define

a number of daemon processes that constantly monitor a multi-stream to which users of the

resource attach their requests; all daemon processes have access to the same data. The order

in which requests are attached to the request multi-stream is non-determinate since it depends

on the relative execution speeds of the active user processes. Updating of shared data takes

place by first locking the appropriate structure before actually performing the update - this

guarantees that no other daemon process can access the data during the period the update is

being performed.

To illustrate, consider the following simple resource management problem[5]. A printer device

is to be shared among many users. Jobs sent to the printer are either slow or fast. Fast jobs

(jobs of less than 10 pages) have higher priority than slow jobs (jobs of greater than or equal

to 10 pages): a slow job is printed only when there are no pending fast jobs to be printed. A

job will be a two-element map:

(map
ack *

print-job : < text to be printed>)

When a job is printed, a notification is written onto the empty-region denoted by ack.

There are three multi-streams used to hold jobs:

input-stream : (open-map.create)
slow-job-queue (open-map.create)

fast-job-queue (open-map.create)

one variable to act as a signal indicating when the fast-job-count goes to zero:

zero-fast-job : t ; initially, there are no fast jobs

and two condition variables for slow jobs:

wait-for-zero-fast-job : nil ; initially there are no fast jobs to be finished
zero-fast-job-signal : (open-map.create)

input-stream contains the job requests made by users; a user executes:

(attach input-stream < my-job>)
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whenever he wishes to print a new job. To receive an acknowledgement that the job has been

printed, the user tries to read my-job.ack.

The slow-job-queue and fast-job-queue contain the slow jobs and fast jobs (resp.) still waiting

to be printed.

The number of fast jobs pending is held in a counter, fast-job-count, that is initially set to 0.

In addition, the print manager also defines two locks, a print-lock which controls access to the

printer and a fast-job-lock that controls access to the counter.

The split daemon partitions jobs found on the input stream by appending incoming jobs into

either the slow job or fast job queue:

split : (lambda (input-stream)
(sequap

next-job : (ucar input-stream)
(seqmap
(if (fast-job? next-job)

(add-fast-job next-job)
(add-slow-job next-job))

(split (mcdr input-stream)))))
(split input-stream)

The daemon runs forever, waiting for new jobs to be added to the input stream. Whenever a

new job is attached to the input stream by a user, it is either added to the slow job queue or fast

job queue depending on its size. Note that both the recursive call and the call to the routine to

add the new job to the appropriate queue can take place in parallel because they are enclosed

within the same map. Thus, while old jobs are being processed, the split function is ready to

accept and initiate processing of new ones. Note that this solution assumes a fair scheduler, in

the absence of one, it is possible that a job may never be added to any queue, always overtaken

by jobs introduced subsequently. The outer seqmap is necessary to throttle the unfolding of

split activations; if it were not present, an unbounded number of activations of split would be

immediately spawned when the function is initially applied (recall that the body of a function

activation evaluates in parallel with the evaluation of the activation's arguments).

The add-fast-job and add-slow-job functions maintain the fast-job-queue and slow-job-queue

resp.

add-fast-job : (lambda (job)
(sequap

(holding fast-job-lock
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(seqmap
(set fast-job-count (1+ fast-job-count))
(set zero-fast-job nil)))

(attach fast-job-queue job)))
add-slow-job : (lambda (job)

(attach slow-job-queue job))

The add-fast-job function is responsible for incrementing the fast-job-count variable. It does

this by first seizing the fast-job-lock, ensuring that only one extant activation can increment

the counter at a time, and then attaches the job to the queue.

There are two daemons responsible for monitoring jobs added to the two queues:

print-fast-job : (lambda (fast-job-queue)
(seqmap

job : (mcar fast-job-queue)
(holding print-lock (print job))
(holding fast-job-lock

(sequap
(set fast-job-count (1- fast-job-count))

(if (= fast-job-count 0)

(squap
(set zero-fast-job t)
(if wait-for-zero-fast-job

(attach zero-fast-job-signal t))))))

(fill job.id "Job Printed")
(print-fast-job (mcdr fast-job-queue)))

(print-fast-job fast-job-queue)
print-slow-job (lambda (slow-job-queue zero-fast-job-signal)

job : (scar slow-job-queue)

(holding fast-job-lock

(if (not zero-fast-job)

(set wait-for-zero-fast-job t)))
(if ait-for-zero-fast-job

(seqaap
(acar zero-fast-job-signal)
(set wait-for-zero-fast-job nil)

(print-slow-job slow-job-queue
(mcdr zero-fast-job-signal)))

(if zero-fast-job
(seqmap

(holding print-lock (print job))
(attach job.id "Job-printed")

(print-slow-job (mcdr slow-job-queus)

zero-fast-job-signal))
(print-slow-job slow-job-queue zero-fast-job-signal))))

(print-slow-job slow-job-queus zero-fast-job-signal)
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The print-fast-job monitors the arrival of new fast jobs. When a fast job is ready to be printed,

the daemon first seizes the printer (using the print-lock lock), decrements the fast-job-count,

returns an acknowledgment message and recurses, waiting for the next job. If the number of

fast jobs becomes zero, a signal is attached to the zero-faut-ob-queue. If there are slow jobs

waiting to be printed and their are no more fast jobs, the daemon attaches a signal to the

zero-fast-job-signal queue.

The print-slow-job daemon is defined similarly except that it only attempts to print a job if

there are no fast jobs waiting to be printed. If there are fast jobs still awaiting to be printed,

it sets the wait-for-zero-fast-job flag indicating that a slow job is in the queue and waits for

a signal to be attached by the print-fast-job daemon when no more fast jobs remain. When

such a signal arrives, it resets the flag and recurses appropriately.

Note that this solution does not prevent starvation of slow jobs; a slow job is only printed after

there are no more fast jobs remaining.

Although the example chosen is very simple, it nonetheless highlights some important issues

in implementing resource managers. In particular, it illustrates the use of locks to guarantee

mutual exclusion of shared data, the role of multi-streams as inter-process communication

devices, and the structure of long-lived daemon processes. The solution is superior to a monitor-

based one insofar as it allows daemon processes and multiple incarnations of the add-fast-job

and add-slow-job to be active simultaneously within the same manager. The print-slow-job

routine would be implemented in a monitor-based language using a condition variable that

becomes true when there are no fast jobs to be printed; this functionality is suiburned by

the zero-faut-job stream. In a manager[5] based solution, each multi-stream would have to be

implemented as separate manager since non-determinate streams are not a user-visible datatype

in a stream-based functional language.

4.4 Summary

The symmetric programming model was developed based on the hypothesis that superficially-

diverse program and data structure forms found in conventional languages need not and should

not be viewed as being distinct. The symmetric programming model is not an attempt to define

an all-inclusive model for every programming language. Every real language constitutes at a
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minimum a series of refinements, embeddings and re-interpretations of the symmetric model;

some languages, for example, Prolog[68] or Smalltalk[38], go significantly beyond or in different

directions from it.

The symmetric model, does however, address some of the fundamental techniques in the man-

agement of program complexity. It does so by defining the organization of programs and data

structures within a unified, recursive framework. The idea of recursive modularity - allow-

ing sub-programs and data objects to have the same structural description as the programs

of which they are a part - is central to our view of what symmetric programs represent and

is a direct consequence of this unified treatment of programs and data. Recursive modularity

is a specific example of the general symmetric metaphor: we now picture programs as cells,

generally arranged linearly but occasionally in some other pattern. Each cell is structurally

identical to every other cell, but certain sub-collections are specialized to particular duties -

storing heterogenous, but related, values, holding the actual and formal parameters of a pro-

cedure activation, or holding entire programs. Even though the contents of these cells may

differ, each cell relates uniformly to the rest: the same rules governing the meaning of names

and position hold and the same evaluation rule applies across all cells. More importantly, each

cell's structure is recursive: an arbitrarily-complex world can be installed inside any given cell.

In the introduction, we had argued that the fundamental characteristic of the symmetric pro-

gramming model is its support for uniformity of various kinds. In this chapter, we examined

solutions to problems that "asymmetric", "non-uniform" languages do not handle well. In the

problems we examined, the conventional separation between program and data structure is not

logically necessary, not only because it obscures basic similarities between these structures, but

also because it forms a practical obstacle to realizing an efficient solution.

Our discussion fell into three categories: (1) describing continuity of program and data structure

over module elaboration, (2) describing continuity of structures under change of viewpoint, and

(3) describing continuity of structure in the presence of parallelism.

In exploring the first category, we observed that common program structures such as begin-

end blocks relate very naturally to common data structures such as records or arrays and,

furthermore, that both of these structures, in turn, are simple components of more complex

objects such as libraries, packages or inheritance-based systems. Given the ability to select,

abstract, and apply environments, we were able to formulate a simple, unified description of
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these sup erfically-diverse structures.

Our investigation of the second category involved a more complicated example that exploited

the concept of recursive modularity; we described a process lattice object in terms of a paral-

lel program consisting of sub-processes and sub-structures. Each of these sub-processes were

themselves objects that could be examined via the usual operations available on data struc-

tures; each of these sub-structures were themselves programs that could be evaluated via the

usual evaluation rule for program structures.

Finally, we examined the interaction between explicit parallelism and program/data uniformity.

Our approach was to treat map structures as objects; in the symmetric model, whenever two

map objects are hooked together, they form a parallel program. By hooking map structures

together in various ways, we were able to derive a number of diverse parallel process structures

ranging from systolic-based filters to dataflow subsystems. Here again, each process retained

the semantics of a data structure and was manipulated as such.

In the next chapter, a more extensive example is developed. This example concerns the design

of the Symmetric Lisp programming environment: how easy is it to implement a programming

environment for Symmetric Lisp in Symmetric Lisp? The uniformity of program and data and

support for first-class namespaces makes this a particularly interesting question.
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Chapter 5

The Progranuning Environment

Symmetric Lisp is intended to serve as an interface to a highly parallel, interactive "meta-clean"

computer system - a system in which virtually the entire state of the system is visible to and

manipulable by the user. Symmetric Lisp also is intended to serve as an interface to a persistent

computer - a system in which data objects can have lifetimes greater than the lifetime of the

computations which created them.

How should interactive parallelism be supported in a monolingual programming environment?

Contemporary research efforts in parallel programming and programming environments have

largely ignored this question. This chapter argues that a uniform representation of programs and

data in terms of first-class parallel environments provide the necessary ingredients to support a

highly parallel, persistent1 monolingual programming environment. The user of the Symmetric

Lisp machine has direct control over all data structures that define his computing environment

including the state of the file system. More importantly, this flexibility is achieved without

introducing a separate system-interface command language or burdening the language with

extra primitives to manipulate a language-external environment.

5.1 The Read-Layer Loop

The front-end (FE) of most interpreted languages is implemented by a read-oval-print loop -

the FE acts as a virtual machine that repeatedly reads a new input expression, evaluates it on

the basis of the internal environment structure maintained by the oval procedure, and prints

'It provides the necessary linguistic ingredients. The question of how to implement persistence is not addressed

in this chapter.

123
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the result. Users usually do not have access to the internal state of oval - programs to access

and manipulate the environment image of an interpreter session must usually be provided as

part of the evaluator package.

The role of the Symmetric Lisp front-end, on the other hand, is to implement a read-layer loop

- expressions input by the user are added as a new element on top of the current environment;

old bindings are superseded by new ones by layering the new binding expression on top of the

old one; a map defines the environment image of the interpreter session. The map built by the

front-end can be examined and manipulated as is. Because environments in Symmetric Lisp

are governed by a parallel evaluation rule, the language supports interactive parallelism: input

expressions in different layers of the growing map under construction by the Symmetric Lisp

front-end are evaluated in parallel, up to the ordinary serialization rules imposed by the name

evaluation rule.

The outline FE (ignoring issues of printing and formatting) can be written as follows:

FE : (lambda (user-env io-stream)
(seqmap

now-element : user-env.(read (mcar io-stream))

(it (string= how-element[IJ "end")

user-env
(FE (layer new-element user-env) (mcdr io-stream)))))

Expressions input by the user are represented as strings in an open-map called jo-stream. The

read operator reads the first element from io-stream, and coerces it into a map object whose

evaluation environment is read's dynamic environment 2. Read is not a function that can be

built out of Symmetric Lisp expressions described thus far; it is a special form that builds map

objects from character strings.

Thus, in the above example, if (acar io-stream) returned the string "x : y', the object

returned by read would be:

(map z : y)

The evaluation environment of this map is the environment specified by user-env.
2 Read plays thi role of the oval operator found in most Lisps, and strings play the role of quoted objects.

The effect of applying oval causes two levels of evaluation to occur on the argument form. First, the argument
is evaluated as per the normal argument evaluation mechanism (which itself involves an implicit call to oval).
The argument is then passed to the oval function where another evaluation occurs. In a similar sense, read
takes a string and coerces it to produce an object that is then evaluated in the context of the read's dynamic
environment.
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The free occurrence of y in this map is resolved by first searching for a binding-value in user-env

and then in the lexical environment of FE. Note that the expression returned by read evaluates

in whatever environment the read expression is evaluated.

If the object read is a termination string, the FE returns the environment image; otherwise, it

recurses with a new environment that is built by layering the region contained in new-element

onto user-env.

Because of the semantics of scope-expressions, no user-defined lookup or insert operations need

to be performed on an interpreter-maintained environment structure.

A user creates a new interpreter session by creating a new map and invoking the front-end3 :

new-env : (FE (map) io-stream)

The lexical-scoping rules of maps means that a function definition input to user-env only

references the binding values of elements preceeding it in the map; elements input subsequently

are not visible to the function (as per the normal scoping rules for maps). Suppose that

io-stream. stream is structured as follows:

(map "y : 3"
(map "f : (lambda (W) (+ x y))"

(map "(f 2)"

(map "y : 4"
(map "(f 2)" *)))))

The corresponding structure of new-env after these expressions have been read (and evaluated)

would be

(map 5 ; result of second application
y 4 ; the binding of y to 4 supersedes the old binding
5 ; result of first application

f (lambda (x) (+ x y))) ; lambda definition

Because lambdas are lexically-scoped functions, rebinding y to 4 does not change the apply-time

behaviour of f; changing the behaviour of f requires side-effecting y. If, instead of the binding

declaration y : 4, the user input, (set y 4), the second application of f would have used the

new value of y. In other words, rebinding of definitions in an interpreter session does not

change the behaviour of previously evaluated definitions; the only way to alter their behaviour

30f course, there is usual bootstrap problem that has to be answered: who accepts these inputs in the
first place, i.e., under what interpreter-session does the front-end itself evaluate? We assume that there is a
system-provided FE that is incarnated at the time the system is initialized.
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is to side-effect the definitions that they do use. This property of the Symmetric Lisp top-level

front-end is in contrast to the behaviour of most Lisps.

Because the front-end is an ordinary Symmetric Lisp function defined over an ordinary Symmet-

ric Lisp environment, one can create multiple copies of it by invoking the function on different

environment and input streams. Users can write routines that manipulate the environment

image without having to alter the front-end code. Most language systems don't allow multiple

incarnations of the front-end to be simultaneously active4 . In systems which do (e.g., Lisp

Machines[391), different interpreter sessions are constrained to execute within the same envi-

ronment - it is not possible to instantiate different sessions (with overlapping lifetimes) that

operate on different environment images.

MIT Scheme, by allowing first-class environments, makes it possible to create multiple versions

of a meta-circulax evaluator, but these evaluators must explicitly maintain and update the

environment image - users in the middle of an interpreter session don't have access to the envi-

ronment image maintained by the evaluator. (Users can examine the environment by coercing

it into an alist object, but this is not the same as being able to examine and manipulate the

environment image directly.) The evaluator image is buried within the meta-circular hierarchy:

once the evaluator is invoked with an initial environment, all expressions input by the user are

resolved only within the context of this environment. The structure of the evaluator prevents

the user from directly accessing any of its internal structures.

5.1.1 User-Generated Namespaces

The Symmetric Lisp user/interpreter interface gives the user great latitude to build, share and

manipulate naming environments interactively.

Consider the following example: suppose that a user while interacting with the system using

E as the interpreter-session environment, wishes to redefine some definitions for test purposes.

Ideally, he should be able to test these new definitions without having to touch the old versions.

Because these new definitions may refer to definitions currently installed in E, they should

be free to access E's elements without the user having to either change the front-end or the

environment structure.

'WhIc not a language-based system per se, Unix does allow multiple incarnations of the top-level shell to
be simultaneously active; we discuss the relation between the Symmetric Lisp programming environment and a
Unix-based one in Section 5.2.1.
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Let the definitions to be tested be: D1 , D2 , .... D,. One first creates a new test environment,

Eteat, within E containing the new definitions:

E'test : (map DI D2 ... Dn)

One can now proceed to test each of the Di by typing:

(Etest.Vi < args >)

to the front-end. This expression retrieves the test definition from the test environment; any

free names encountered within Di are resolved by searching first in E,.et then in E. Thus, in

testing Di, any free references to Di automatically resolve to Dj's test definition. One could

evaluate a program p in the context of the environment defined by Etest by evaluating

Etest.p

All free references to any of the Di found in p would resolve to their meaning in Etest.

By placing the new definitions inside a map, one effectively hides them from expressions sub-

sequently input to E. If the ith test definition is named Di, the user can install it into the

interpreter-session environment by writing

Di : Etest.Di

This binding is effectively installed as part of E.

Now, consider a generalization of the above example in which different interpreter-sessions need

to (selectively) share information with one another. Suppose that El and E2 are the environment

images for two incarnations of the Symmetric Lisp front-end:

El: (FE (map) io-streaml)

E2 (FE (map) io-strea2)

Suppose that a user now wishes to instantiate a new interpreter session (call it E3 ) in which free

references to certain names are to be resolved using their values in either E or E2 . For example,

suppose that all free references to the name a occuring in E3 need to be resolved using a's value

in El and all free references to name b need to be resolved using its value in E2 (it is assumed

that a and b are not redefined in E3 ).

One might, of course, simply choose to copy the value of the relevant bindings into the new

interpreter-session environment, but such a solution would not be appropriate if other active

sessions also share (and update) El and E2 . Fr example, if there is slightly modified incarnation

of the FE that uses the environment defined by El in evaluating its input expressions, changes

made to E 1 's bindings by E 3 would not be visible to expressions in this interpreter. Because
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of the possibility of sharing, then, a solution to this problem should not involve alterations

to any of the existing interpreter environments. Shared namespace management of this sort

is an important, but to-date largely ignored, issue in the design of multi-user language-based

systems.

One can devise a solution to this problem in Symmetric Lisp by projecting the binding-values

of a and b onto a new map that is then used as the interpreter-environment:

E3: (layer (select El a) (select E2 b))

E3 looks like:

(map a < a's value in El>
b < b's value in E2 >)

One can now instantiate a new interpreter session thus:

(FE E3 io-streas)

where io-stream is an input stream as described earlier. Note that this solution also involves

copying, but the semantics of map selection involves copying only addresses not structure values.

E3 is a map that initially contains two regions: the first region contains a binding for a projected

from E 1 ; the second regions contains a binding for b projected from E2. Because the elements

projected by the select operator are shared with the source maps, any changes made to a

or b in the orignal maps will be visible to users of E3 . (It should be noted that this solution

presumes that a and b are map structures; scalar objects are not shared between a map and its

projections.) Assuming the definition of FE given earlier, the expressions found in the regions

subsequently attached to this map, therefore, automatically evaluate in an environment that

contains bindings for a and b. Moreover, any changes made to these names will become visible

to other users of E1 and E2 .

This solution required no alterations to either E1 or E2, nor did it involve annotating free

occurrences of a or b in the input stream with particular environment prefixes. The ability

to extend environments via the layer operation coupled with the map-sharing semantics of the

name-projection operator are the novel pioperties of the language that allow such a formulation.
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5.2 The Programming Environment

Most users of a computer system have very little control over the programming environment with

which they interact. To manipulate their environment, they must either use the built-in utilities

provided by the system implementors or write their own command language operations. While

the command language may enable them to control their environment to a degree, it is usually

not expressive enough for programming more general applications. Application languages,

on the other hand, have historically been designed with little concern for the programming

environment within which they are to execute; outside of providing some operations to read

and write files, most languages isolate the user from gaining access to any other part of the

command-level'. Consequently, users of a typical computer system must have fluency in at

least two languages: they must be fluent in the command language to be able to run, modify

and examine programs and procedures and they must be fluent in an applications language to

implement useful non-systems related problems.

The introduction of large time-sharing systems in the early 1960's stifled the development of

high-level programming environments. Since one of the primary goals of such systems was to

provide an environment supporting a number of programming languages and applications, a low-

level command language (i.e., the operating system interface) became the common denominator

through which users of different languages could interact with the system. With the advent

of high-speed personal workstations, the dependence on time-sharing systems has significantly

diminished. Despite this trend, most workstations still maintain the legacy of their timesharing

ancestors by continuing to enforce the separation between command and application languages.

Herring and Klint[41] write that three necessary conditions that need to be satisfied in designing

a language-based computer system are: (1) elimination of any distinction between programs

and procedures (2) support for implicit persistence - no distinction should be made between the

naming and typing of files and variables and (3) directories and libraries and other modularity

structures found at the command-level should be available as data structures in the language.

In other words, users (and application programs) should have free access to the structure of

the system environment. Few languages fill any of these requirements, however; Smalltalk[38],

Interlisp[62] and related Lisp Machine environments, and Cedar[61] are perhaps the most no-

'A notable exception to this is the JOHNNIAC system developed by the Raid Corporation[44] which was
perhaps the first proposed design for a monolingual programming environment.
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table exceptions. These systems present an integrated programming environment to the user;

they facilitate user access and manipulation of system-maintained structures by combining the

requirements of both the command and applications language into a single, unified framework.

Almost all interaction between the user and system can be mediated through the same language

used to express regular applications.

The Symmetric Lisp programming environment is similar in spirit to other monolingual envi-

ronments insofar as it attempts to eliminate any distinction between system-routines and user

programs: users can extend, restructure and customize the system to their choosing since all

operations on system-maintained structures are written in the same language as application

programs. This is accomplished, not by adding extra data types and structures to accomodate

the special needs of a command-level language, but by couching i . ommand-level operations

in terms of maps and map access. Our discussion in the following sections focuses primarily

on linguistic issues related to programming environments. There are a number of important

questions not pertaining to the semantics of the command language that are, nonetheless, very

relevant to the design of a usable programming environment (e.g., file protection, resiliency,

scheduling policy among users, etc.). A truly workable Symmetric Lisp programming environ-

ment must address these issues in detail; the implementation of protection, persistence, etc. in

the context of Symmetric Lisp is an important topic for future research.

5.2.1 Parallelism

Unlike any of the other language-based systems cited above, however, a Symmetric Lisp-based

system is intrinsically parallel. Once an expression has been read, its evaluation can proceed

with expressions input subsequently. Because the front-end defines a map object, input expres-

sions that refer to names whose values are not yet known simply block (as per the normal name

evaluation rule) until a value is computed, and then proceed as usual.

What use is parallelism in this context? Users often need to perform several computations si-

multaneously. Conventional machines use multiprogramming or logical concurrency to support

parallelism; parallel machines can support true concurrency. The important question is how

concurrency is presented to the user.

Conventional solutions along the lines of a Unix fork are not very satisfactory because they place

on the file system the burden of keeping track of the results yielded by the background processes.
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Users can't exploit this parallelism very effectively because each background process executes

independently of the others; sharing or communicating pa'rtial results is completely under the

control of the file system. Moreover, each process executes in a separate address space. Process

forking is also expensive in such systems because of the cost of a context switch. Alternative

solutions like that used in Lisp-based machines[39] allow users to express parallelism explicitly

at the interpreter-level, but only by wrapping expressions that are to be evaluated concurrently

inside a special process construct. Lisp processes are, themselves, implemented using expensive

coroutines; all processes execute within a flat namespace and, like a Unix-generated process,

can't be encapsulated within other data structures. They are not integrated into the rest of

the language because their semantics remain very much implementation dependent. To date,

there are few commerically-available parallel language-based workstations6 ; user interfaces for

most existing parallel machines are usually implemented using Unix or some similar variant.

Symmetric Lisp, on the other hand, allows concurrent evaluation to coalesce naturally into a

shared naming environment. Suppose, for example, that a user chooses to run four test cases

of some function in parallel. He might type:

test-cases : (map
first (f first-args)
second : (f second-args)
third : (f third-arge)
fourth (f fourth-args))

The value returned by the first test-case will be accessible, as soon as it completes, under the

name first; to inspect this value, the user simply types:

test-cases .first

to the evaluator. He might type test-cases.first even before the computation is complete.

Evaluation of the expression first accordingly blocks - but the front-end, because of its non-

strict behaviour (i.e., because of the semantics of map evaluation), doesn't block: it stands

ready to accept new input despite the fart that previous expressions, in this case 'first" is still

under evaluation. If, after generating the four parallel test-case jobs, the user chooses to format

the results of the first two and send them to the printer, he might enter:

(print (format test.first test.second))

format would block until "first" and "second" become available.

'The Cogent-XTM system running Linda and the Xerox Firefly system running Modula-2 are notable
exceptions.
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how is functionality of this sort different from that found in Unix or modern window-based

command monitors? Unlike these systems, the Symmetric Lisp evaluator operates without t"

extraneous influence of a file system or a window monitor. It interfaces cleanly to other pie,

of an expanding program structure because the environments that it manipulates are directly

accessible to the user.

Functionality of this sort can probably be expressed in other non-strict, interpretative languages

(e.g., parallel Lisps or interpreted non-strict functional languages) by encapsulating every input

expression inside of a process creator (e.g., a MultiLisp future[40]). But, note that such a solu-

tion places the burden of maintaining the environment structure on the front-end; parallelism

is managed explicitly by the top-level evaluato-. not the environment structure that is being

augmented. Because the front-end must mana-- the interaction of processes, it is responsible

for implementing the scope rule implicit in the semantics of open-maps: element k cannot begin

evaluation until the name to be defined by element k - 1 has been installed in the environment.

Since one can input map expressions at the top-level, one can also build local parallel threads of

computation in the midst of an interpreter session. For example, to evaluate a cobegin-coeand

statement, one need only input a map containing an element corresponding to each element in

the parallel form. Consider a parallel algorithm that is structured as a controller and a series

of identical workers. Entering the expression:

(map (control) (worker) (worker) (worker))

creates a four-thread parallel computation; as usual, the evaluation of this expression yields

another well-defined object that can be examined and selected but does not cause the front-end

to block waiting for the result.

5.2.2 File-Systems and Naming Environments

Persistency refers to a data structure's outliving the program that created it. Few programming

languages support persistency; most require instead the use of an external storage agent such

as a file-system to manage long-lived data. Consider the three monolingual systems r,'vntioned

earlier: Interlisp retains the distinction between files and other data objects; files cannot be

defined using the language's standard type-definition facility. Files are managed instead by

a separate file-package manager that is responsible for maintaining all permanent libraries.

Like Interlisp, Cedar distinguishes between long-lived and temporary data. Users have the
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responsibility of interacting with the file-system whenever data is to be made permanent; they

cannot specify that a structure is to be permanent without first writing it into a file. Unlike

InterLisp, all permanent data in Cedar is represented in terms of file types.

Smalltalk differs from both InterLisp and Cedar in its support for persistency: all class def-

initions in Smalltalk are assumed permanent; local definitions and non-class objects are not.

Although one might consider the Smalltalk class to be the analogue of a Cedar file, there are

important semantic differences between the two. A Smaltalk class need not be enveloped inside

a file-object to become persistent - all classes are, by definition, persistent objects. A Cedar file,

on the other hand, is a permanent object but the only operations allowed on it are primitive

read and writes - its semantics are independent of the semantics of the structures which it

encloses.

Environments in Symmetric Lisp are potentially persistent objects - a map's lifetime is in-

dependent of the expression that creates it. Any element attached to an interpreter-session

open-map exists for as long as the open-map does (unless the user explicitly removes it). Such

an environment can be made one element of a global "world-map" that is assumed to exist

indefinitely. This view of persistence is similar to that found in PS-Algol[10, 11].

The global world-map is built when the system is initialized. It remains extant forever and is

never discarded. Here again, we note that we are not addressing the means by which the world-

map becomes persistent; our focus in this section is to discuss how, given a means by which

persistent objects may be built, first-class environments may be used to implement applications

common in modern-day file-systems.

Persistence is a transitive property - any object attached to the persistent world-map is also

persistent. Since there is no constraint on what objects may be attached to an open-map, any

object can become potentially persistent. Users need not explicitly state which objects are to

be made persistent and which are not; if the front-end, upon close of a session, attaches the

newly-created environment object to the world-map, every element in this interpreter-session

map will outlive the front-end activation. Thus, if the result of an interpreter-session is found

in my-env-today, the expression:

(layer (map today : my-env-today) world-map.my-user-env)

records the session as an element in my-user-env; this environment is part of the perqistent

world-map and can be referred to by evaluating
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world-map. my-user-env. today

5.2.2.1 The File System

Assuming the provision of a top-level persistent map, one can use environments as file systems.

They have the attributes that axe important in modern file systems: they are named collection

of named elements that may be freely nested. Thus, a file system might take the form:

file-system : (map
lock-file-system : lock

directory, (map ... )
directory2  (map ... )

directory,, (map ... )... )

Such a file system has the unusual characteristic of having a structure, type and organization

that is completely specified by the user. Users are free to restructure the file-system as they

choose because the organization of the system and the operations defined over it can be fully

expressed in terms of Symmetric Lisp maps and map-operations. In this sense, one can view

Symmetric Lisp simply as a base-language that provides the mechanisms upon which to imple-

ment more sophisticated file system policy decisions. The file-system would be an element of

the global world-map.

To add a new directory to the file-system, one might evaluate:

(holding file-system, lock-file-system

(set file-system

(layer file-system (map directory,+1 : < new-directory>))))

This expression atomically adds a new layer containing directory,+, to the file-system map; by

seizing the lock-file-system lock before performing the update, we guarantee that the append

operation is atomic.

A directory is structurally similar to a file-system and is defined by the following directory

template:

make-directory : (kappa (protection-info user-group number-of-files-alloyed)

lock-directory : lock

files : (map)
get-file (lambda ... )...)
size-info (lambda (...)...)

delete-versions : (lambda ... ) ...
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One creates a new directory by evaluating (make-directory) giving the appropriate arguments.

In the above formulation, files is accessible to all users of the directory. It may be desirable,

however, to restrict free access to the files field, for example, in situations where the system

needs to make sure that a user has the required access rights to the directory and file before

allowing him to examine the file's contents. One can implement a simple restricted access policy

by declaring the files map to be private. Users of the directory would no longer be able to

examine the contents of the files map by name' directly, but the procedures declared within

the kappa - get-file, size-info, etc. - do have access to the file map because they are found

within the same lexical environment. Thus, in a protection-based implementation of a directory

system, one would access a file in a directory dir by evaluating (dir.get-file file-name) where

file-name would presumably be the string representation of the file. (The means by which strings

are converted to names is described below.) Note that any reasonable implementation of the

language would ensure that the body of all function definitions found within the kappa are

shared among the kappa's different instantiations.

A file is any Symmetric Lisp object; one can add a new file to a directory in the same way that

one adds a new directory to a file-system:

(holding directory. lock-directory.
(set directory.files

(layer (map new-file) directory.files)))

In order to manipulate files and directories, it is important to be able to operate over names

and bindings flexibly. To this end, the language contains several coercion operators between

strings and maps. The expression:

(make-map sl el S2 e2 ... Sk ek)

(k > 1) builds a k element map. Each of the si is either a string (containing alphanumeric

characters, not including space or return) or the keyword nil. Each of the ei is an expression.

The make-map operator returns a map expression:

(map
n el

n2 :e 2

nk : ek)

'Unfortunately, they would still be able to access the elements of a directory by position. To prevent this
situation we must extend the semantics of maps to allow the user to prohibit position-based selection of a map's
elements if he so desires.
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where the ni denote the name representation of string si; if si is nil, then the i th element in

the created map expression is simply e,. Each of the ei evaluate in the evaluation environment

of the make-map expression. Make-map is useful when one wishes to build a map given a string

representation of a name. For example, when adding a new file to a directory, the file-name

will presumably be represented as a string; using make-map, one can convert the string to a

Symmetric Lisp name. If the string bound to identifier tile-name is "too", the expression

(holding directory. lock-directory

(set directory

(layer (make-map file-name < contents>) directory.f iles)))

adds the binding too :<contents> to directory.tiles; if there already existed a file named

too, contents supersedes too's old binding-value.

Most modern file-systems support some form of file version management: users can place several

files with the same name in the same directory; a version number is usually attached to each file

to disambiguate it from other files with the same name. The file-system sketched above does

not support version management - because of the semantics of layer, maps containing files

with the same name will simply supersede old definitions with the new ones. Once superseded,

it would be no longer possible to retrieve the old file.

To support version management, some facility is needed to operate over names (or their string

equivalents). In order to manipulate names as strings, the language also provides an operator

that behaves like the inverse of the make-map constructor; the expression, (names-in-map M),

returns a map containing the string representation of all names defined in M. Thus, given the

directory:

M : (map
protection-info
user-group : ...
nuber-of-files-alloved
lock-directory
files : (map

.,

the expression, (names-in-map M.files) returns the map

(map "ti 18ft2 " ... t,")
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Every binding name in files is represented as a string and returned in a map; note that given

the semantics of maps, there cannot be duplicate file names in M.files.

Given string operators like those found in Common Lisp and the ability to convert Symmetric

Lisp names into a string representation, one can proceed to build a simple version management

system. For example, suppose that the version number of a file is attached to the end of the file-

name, separated by a period, thus: fle-name.version-number. One can now use the following

function to determine the number of files with the same name in a given directory:

get-current-version: (lambda (directory file)
file-names : (names-in-map directory.files)

(map-reduce +
(onto (lambda f)

(if (string= (string-right-trim "."e f)

file) 1 0))
file-names) 0))

The map-reduce function behaves like the reduce operator found in Common Lisp except that

it operates over maps (not lists); the string-right-trim function strips off all characters in

f starting from the right up-to and including the period; this operation removes the version

number information from all files found in the directory. The onto operator simply records a 1

for every file-name that matches the input argument, and a 0 for every one that doesn't. The

elements of the returned map are then accumulated by the map-reduce operation.

Once given a means of determining the current-version number of a file, one can now write a

routine to add a new file to a directory with the appropriate version information attached to it:

add-file : (lambda (directory file-name contents)

current-version : (get-current-version directory file-name)

new-version-number : (1+ current-version)

new-file-name : (concatenate file-name "."

(prinl-to-string new-version-number))

(holding directory. lock-directory
(set directory. files

(layer directory. files

(make-map new-file-name contents)))))

Thus, if M.files is the map,

(map
my-file.1 : < contents-I>

my-file.2 : < contents-2>)

the result of evaluating (add-file M "my-file" <new-contents>) causes M.files to become
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(map
my-f ile. 1 < contents-I>
my-f ile.2 < contents-2>

my-f ile.3 < new-contents>)

One can build upon this simple framework to express more complicated version management

operations. For example, one can define a function that returns the contents of the ith version

of a file as follows

string-to-exp (lambda (string-exp)
read-stream : (open-map.create)
(attach read-stream string-exp)

(read read-stream))
get-contents (lambda (directory file i)

file-name : (concatentate file .

(prinl-to-string i))
(mlast

directory.files. (string-to-exp file-name)))

file-name is bound to the string representation of the file name whose contents are needed;

the string-to-exp function converts the string into an expression via the read operator. The

object returned by string-to-exp is a map whose evaluation environment is string-to-exp's

dynamic environment; in this case, it will be the environment defined by directory.files.

An unwanted consequence of this solution is that the search for the file will continue outward

to the evaluation environment of get-contents if the file is not found in the directory8 . Despite

this deficiency, this solution nonetheless illustrates how the built-in name-lookup semantics and

the use of a layering operation could be used to implement non-trivial directory management

routines; outside of the two coercion operators to build strings from names, and to build maps

from strings, no other extensions to the kernel language were required. The file-system given

here is by no means the only one implementable in the language; users are free to restructure

their file system or to implement other version management procedures if they wish.

Consider another example. To delete all versions of a file, one need only seize the directory

and build a new map containing all the current file entries in the directory except for the file

versions to be deleted. Because map elements are shared, the overhead of this procedure is only

in the copying of bindings; the contents of the files themselves are not copied.

'An exception h'ndlir.g mechanism could be used to prevent such a situation from occuring; the linguistic
issues relating to an exception-handling facility is not difficult to understand- a simple non-traversing variant of
with can be used to express a primitive exception facility. On the other hand, the implementation of such a
mechanism in the context of a non-strict evaluation semantics is a more problematic question.
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delete ; (lambda (directory file-name)

ne-file-structure : (map-reduce layer
(map-remove nil

(onto (lambda (t)
(it (string= f

(string-right-trim f''.' tile-name))
nil
(make-map f directory.files.f)))

(names-in-map directory.files))) (map))
(holding directory. lock-directory

(set directory.files new-file-structure)))

Evaluating the onto expression yields a map whose elements areeither nil or a one element map

containing the binding associating a file-name with the file's contents. The map-remove function

returns a new map in which nil elements have been removed; the map-reduce operator performs

a union (using the layer operator) of the sub-maps found in the map returned by map-remove.

One can easily rewrite this function to remove a single version of a file if one chooses.

The version management system described above is by no means the only one possible. An

alternative approach would have been to treat a file as a map of versions. In this scheme, the

ith element in the file-map would represent the ith version of the file. Thus, the contents of

M.files shown above may be structured as follows:

files : (map

my-file : (map
contents of my-file.1
contents of my-file.2))

In this scheme, the add-file function would be rewritten as follows:

add-file : (lambda (directory file contents)

(holding directory. lock-directory

(set file (layer file (map contents)))))

This function assumes, as did get-contents, that the directory contains the file in question.

Unlike the add-file function used to add files in directories with explicit version numbers, the

arguments to the above function axe not strings; if we wished to add a new version to a file

named f in directory d, we evaluate, (add-file d f <contents>). The function simply appends

the contents onto the end of f; it locks the directory to prevent other users from accessing f while

the append takes place. In this scheme, the get-current-version function would be replaced

by an last operation:

(get-current-version directory file)
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(mlast directory file)

where, once again, file is not a string representation of the file name but rather the contr iLs

of the file itself.

Note that in the versions-as-separate-maps scheme, versions are treated files; the version number

associated with a given file is fixed at the time the file is created. Thus, a file with name

my-file.3 retains this name even if my-file.2 is subsequently deleted. In the versions-as-

regions scheme, versions are not treated as separate files; the definition of the "it' version of a

file" changes if previous versions of the file are subsequently deleted. Symmetric Lisp supports

both kinds of version management equally well.

Another important file-system command that is easily implemented using maps and the stan-

dard string operators is file-name completion. Given a string, s, and a directory, one requires

a procedure that returns all file-names in the directory of which s is a prefix.

file-complete : (lambda (directory substring)
files-names : (names-in-map directory.files)

(map-remove nil
(onto (lambda (file)

(if (string< substring file)

file

nil))

file-names)))

file-names is bound to the string representation of all file names found in the directory. The

onto expression performs a string comparison on each file, returning the string representation

of the file-name if the input string is a prefix of that file.

How is the structure of the file-system given here different from one that would have been

devised in other high-level, expression-oriented languages? The feature of Symmetric Lisp

that clearly dominates the design of the fie-system is the language's support for first-class

environments. Name-lookup and namespace management are fundamental tasks of any file-

system; a language-based implementation of an operating system in which the base language

does not support environments as first-class data types means that the implementor of the

file-system must explicitly provide routines to handle namespace management. Because these

operations are primitive tasks in Symmetric Lisp, the Symmetric Lisp programmer has freedom

to structure and access the file-system in any way he chooses.

On the other hand, it may be argued that the truly important issues in the construction of
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a language-based system are not those that deal with the linguistic primitives that the base

language ought to provide but rather those that address the implementation of persistency and

protection. It is cei alwdy possible, for example, to implement a file system based on the struc-

ture we have here in a language like Common Lisp using, for example, alists rather environments

as the fundamental structuring tool. Our claim is that first-class naming environments provide

a more satisfactory basis upon to which to build a file-system than structures like alists. On

the other hand, it is clear that this is not the whole picture; a viable base language must be

accompanied by an efficient implementation of persistence and protection; we come back to this

issue in Chapter 8.

5.2.3 Meta-Cleanliness

Parallelism and persistence in Symmetric Lisp combine to form an interesting and vigorous

symbiosis. Because all file-like operations in Symmetric Lisp are actually operations over maps,

parallelism is inherent in any file operation. The ability to treat maps as long-lived, light-

weight processes coupled with their role as first-class environments leads to other kinds of

expressiveness not easily available in other language-based systems.

As a first example, consider the following situation: the user wishes to run many test cases of a

program Q concurrently; he wants to analyze the results of each run using an analysis program,

analyze; whenever an analysis turns up a "good result", he wants the result entered into a

directory named good-runs.

One convenient way to go about this is to create a new environment called test-runs that

contains the test runs desired:

test-runs : (map
(Q < first-test-args>)
(Q < second-test-args>)

All test runs will evaluate in parallel. One can now set up the analysis state by evaluating (onto

analyze test-runs). The result of this expression is a map containing the result of applying

analyze to each test-run; if this expression is bound to analyze-cases, one can determine the

"good" runs by evaluating

(map
good-runs : (make-directory < protection-info user-group number-of-ffles-allowed>)
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(onto (lambda (analyzed-case)
(it (check-out analyzed-case)

(add-file good-runs ''test-runs'' analyzed-case)))

analyzed-cases))

Each test-run added to the directory will automatically have a unique version number associated

with its file name. This is a simple solution to what would be, in most systems, a difficult

problem.

The absence of any distinction between application and command levels in a Symmetric Lisp

system has other beneficial consequences. One can, for example, store a collection of libraries

in a directory and use them directly in application programs without having access to them

mediated by system level routines. One might store commonly used functions in a library-

directory:

library-directory (map
structures-library : (map

stack (kappa ... )
queue (kappa ... )

tree : (kappa ...

transcendental-library : (map

sin (lambda ... )
cos (lambda ... )

To evaluate a program, p, using the functions declared within this library one would evaluate

(with (layer library-directory.structures-library
library-directory, transcendental-library

p)

Assuming that all functions are defined in only one library, all functions declared within all

libraries are then accessible to p.

One can effect the behaviour of a load function commonly found in Lisp environments by

evaluating:

load-library-env : (layer library-directory.structures-library

library-directory, transcendental-library

load-library-env is bound to an map containing the most recent definitions of all routines

defined in the various libraries contained in the library directory. To set up an interpreter-
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session in which all expressions evaluate in the environment specified by load-library-env, one

would evaluate:

(FE load-library-onv io-stream)

Because all definitions are recorded as part of the evaluation environment of the open-map,

free names referenced by expressions input to this FE are first resolved by searching through

load-library-onv.

5.2.3.1 Creating Daemon Processes

A daemon is a passive process that watches a data or program structure waiting for new

developments. Background jobs in conventional multiprogrammed systems can be used to

build daemon-like processes, but such jobs have limited applicability in these systems because

they are built and managed by command-level, not applications-level, programs. In Symmetric

Lisp, on the other hand, it is easy for the user to create daemon processes because there is

no boundary separating the structures manipulated by the user and those manipulated by the

system. Some examples are given below.

Example 1:

Consider the following definition of a mail-daemon:

mail-daemon : (lambda (mail-stream)
now-mail : (mcar mail-stream)
(seqmap

(display-nug now-mail)

(mail-daemon (mcdr mail-stream))))

To use the daemon, a user types (mail-daemon my-mail-stream) to the front-end. The evaluation

of this function runs indefinitely - but, the non-strict semantics of maps implies that the front-

end itself doesn't hang; it is ready to receive new input despite the fact the evaluation of a

previous expression, here the function application, is still ongoing. Whenever a new message is

appended (using attach) to my-mail-stream, the daemon displays the message and then quiesces

to await the next one. Users can simultaneously read mail by traversing ov-ail-stram using

acar and mcdr.

Example 2:
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Consider a function that is to print a message whenever a user attempts to redefine a keyword

during his interpreter session. Such a function can be conveniently written as a daemon process

that watches the environment stream constructed by the front-end.

redefine? : (lambda (user-env keyword-map)
new-item : (get-name (mcar user-env))
(seqmap

(if (map-reduce or
(onto (lambda (keyword-item)

(string= new-item keyword-item)) keyword-map))
(write (format ,Attempt to redefine keyword: S",new-item)))

(redefine? (mcdr user-env keyword-map))))

This daemon checks if any element added to user-env defines a region using a keyword.

Keyword-map is a map containing the string representations of names the user wishes to be

reserved. The get-name special-form is a restricted version of names-in-map; it evaluates its first

argument to get a map-region (i.e., an 1-value) and returns the string representation of the

name associated with that region if one exists, or returns nil otherwise. In the above exam-

ple, new-item is bound to the string representation of the region-name of the current head of

user-env.

It is interesting to note that this daemon can execute from within the open-map that it is

examining. That is, if front-end E is building environment user-env, the user can input:

(redefine? user-env keyword-map)

to E. Because maps are distributed data structures, redefine?'s activation can access user-env

even though it is strictly a component of that open-map. Because maps are non-strict, the

front-end can proceed to accept new-input while redefine? continues to execute. If we assume

that E builds user-env by side-effect, redefine?'s activation will be able to examine new input

as they become available.

5.3 Summary

The primary focus in this chapter has been on describing how one might construct a monolingual

programming environment implemented in Symmetric Lisp. There are three prominent features

of the language make it a good candidate as a base language for a monolingual computer system:

1. Environment management is a fundamental part of the language's semantics. This means
that the Symmetric Lisp front-end need not maintain any internal environment image:
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it repeatedly executes a read-layer operation rather than executing the conventional
read-eval-print loop. Expressions input to the front-end execute within, and resolve
into, a unified name-space.

2. Parallelism is fundamental in the evaluation of every map expression. This means that
the front-end is a parallel program: expressions input to it are executed concurrently
with othor input with the only constraint being that imposed by the name-evaluation
rule. Parallelism also implies that users are free to build daemon processes to monitor
the evolution of running programs or to watch communication streams for developments.

3. We require the existence of a persistent world-map structure to which any Symmetric
Lisp object may be attached. Because maps are the fundamental program as well as data
object in the language, any data object, not just files or directories, can be stored on the
persistent image. This includes the environment built by the front-end during the course
of an interpreter session.

In the introduction, we had observed that the symmetric model supports uniformity between

language-level and system-level. We envision Symmetric Lisp as a high-level operating-systems

language or as a base language in a heterogenous environment. Because it provides a good

foundation for building flexible system-level structures, we believe that the same techniques

used to show the relationships between superficially diverse program structures can be used to

also relate superfically diverse structures found in different domains; for example, the structure

of the object yielded at the end of a session with the Symmetric Lisp front-end possesses the

same structure (and is built in the same way) as the objects manipulated in a Symmetric

Lisp-based inheritance system.

The following chapters address issues of implementation. The next chapter focusses on compi-

lation issues, concentrating in particular on the question of determining the proper evaluation

environment of identifiers. Chapter 7 discusses a source-to-source transformation of Symmetric

Lisp expressions into a dataflow language.
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Chapter 6

Name- Translation

First-class environments raise many interesting compilation-related issues. The ability to pa-

rameterize and extend the evaluation environment of expressions, the uniformity of program

and data structures, and the fine-grained parallel evaluation semantics of maps makes the Sym-

metric Lisp compiler's task a challenging one. In this chapter, we examine the issue of name-

translation in the Symmetric Lisp context: how can we statically infer the proper evaluation

environment of any identifier found in a Symmetric Lisp program?

Unlike block-structured or functional languages in which the lexical environment of the reference

defines the variable's evaluation environment, the presence of scope-expressions in Symmetric

Lisp means that there may be several possible evaluation environments for a given identifier.

Because of the language's ability to parameterize the evaluation environment of expressions, the

issues that arise in inferring the proper evaluation environment of Symmetric Lisp identifiers

are quite similar to those that arise in inferring the proper method and class definitions for

identifiers in late-binding languages like Smalltalk[60].

The information yielded by a procedure that determines the evaluation environment of iden-

tifiers in a Symmetric Lisp program would be of greatest use to the Symmetric Lisp code-

generator. A code-generator could use the information provided by this procedure to translate

symbolic name references into a more more efficient base-language representation. In the ab-

sence of such a procedure, the evaluation environment of identifiers found in scope-expressions

would need to be determined dynamically by the runtime kernel. Most implementations of late-

binding languages (e.g., Smalltalk[27]) usually require sophisticated runtime name-translation

facilities to achieve reasonable execution performance. The ability to statically determine the

147
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environment containing the api priate binding for an identifier would relieve the runtime

kernel of the burden of performing such a task; the compiler can directly generate code that

accesses an identifier's binding value from the base-ianguage environment structure provided

that it knows the environment in which to look.

In this respect, the motivation for implementing a name-translation mechanism is in many

ways similar in spirit to the motivation underlying strictness analysis mechanisms[21] used in

the compilation of lazy functional languages. In an implementation of a lazy functional language

employing strictness analysis, the compiler tries to determine which arguments to a function

can be evaluated in parallel with the application of the function by evaluating the strictness

of the function with respect to that argument. The parallel evaluation of strict arguments

and function application increases the concurrency of the program but does not compromise

the language's normal-order semantics. Our approach to name-translation serves a similar

purpose: by mapping all expressions to a greatly simplified domain that gives information

about the names they define, we can improve execution performance (since runtime name-

translation is reduced), while still preserving program meaning (as specified by the language's

operational semantics).

The problem of determining the evaluation environment of Symmetric Lisp identifiers is inti-

mately related to the problem of determining the structure (or type) of environment-yielding

expressions. For example, consider the expression:

f : (lambda (x)
(with x id))

The meaning of the free variable id in the scope-expression is dependent upon the structure of

x: if all applications off in the program define a binding for id, then the evaluation environment

of id can be determined to be the environment yielded by evaluation of x. On the other hand,

if it can be determined that f is never applied to an actual that defines id, then the value of

id in f should be determined by its binding value in f's lexical environment. In both of these

cases, the reference to id can be efficiently translated: in the latter case, one can translate the

reference to be the address of id in the lexical environment; in the former case, the reference

can be translated into a lookup-operation into the environment structure denoted by x. It is

possible based on the semantics of with, however, that x inconsistently defines id; consider the

following two calls to f:

(f (map id : < exp >))
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(f (map))

The first application defines a binding for x whereas the second one does not: in the first

application, the value of id should be its binding-value in x; in the second application, its value

should be retrieved from f's lexical environment. In this scenario, there is no efficient translation

of id possible - a runtime search on the environment activation structure is necessary in order

to determine the environment in which it is defined.

As a second example, consider the function:

g : (lambda (W)
(1+ (mlast (select X y)

The operational semantics of select tells us that y must be defined in x. The free reference to

y can be compiled into a lookup-operation on the environment defined by X; no dynamic search

along a runtime environment structure is necessary in this case.

As a third (and related) case, we can assert that the map object yielded by evaluation of the

expression:

h : (map x:1 y:2 )

never defines any other name besides x and y1 ; thus, if this expression is ever used as an

environment-specifier in a scope-expression, e.g., (with h (+ x z)), examination of h's structure

tells us that the reference to x should be resolved using its binding-value in h whereas the

reference to z should be resolved based on its binding-value in the lexical environment of the

scope-expression. Similarly, one could also assert that the map object yielded by evaluation of

the select expression in function g never defines any names besides x.

The central observation that should be made from the above examples is that the type of an

environment-yielding expression must say something about the names defined by that expres-

sion. The type of a map expression, for example, should, in addition to specifying the types

of its component regions, also indicate that the map always defines the names bound to its

regions. On the other hand, the type of an environment-specifier of a scope-expression may not

always define the same set of names (e.g., consider identifier x used in function f above); its

type should indicate which names it always defines and which names it sometimes (or incon-

sistently) defines. For example, one possible type that can be inferred for g is a function type

'Assuming, of course, that h is not side-effected to a map-object that defines other names.
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that maps from environments defining name y to integers. Similarly, one possible type for h is

an environment type that maps x to integers and y to integers.

It is instructive to determine whether the name-translation problem is indeed made any easier

in the absence of scope-expressions. Let SL - SE be a subset of Symmetric Lisp that does not

support scope-expressions. In the absence of scope-expressions, the map structure that defines

an identifier's lexical environment is the only evaluation environment of interest2 . This assertion

can be stated formally as follows:

Proposition 6.1 Let M be a Symmetric Lisp program containing no scope-expressions. Then,

the evaluation environment of an identifier in M is always its lexical environment.

Map structures in SL - SE cannot affect the evaluation environment of other expressions; while

they may be projected (via select) or selected by position (via index), they cannot be used

to change the evaluation environment of any other expression as is possible via with. This

is not to imply that maps may not be passed as arguments to (and returned as results from)

functions; what the proposition does imply is that the bindings defined by a map expression are

accessible only to other expressions defined within the map. One can access the values a map-

object defines by position - this ability is orthogonal to the issue of name-lookup, however, and

requires no sophisticated compilation support to implement. Insofar as the name-translation

problem is concerned, Symmetric Lisp programs that do not contain scope-expressions can be

compiled through standard techniques used to implement other lexic~Lly-scoped languages.

This chapter presents an extended type inference system (called an environment inferencing

system) which can be used as the basis for implementing a procedure to infer the proper

evaluation environment of identifiers in a restricted subset of the language; the subset includes

higher-order functions, projection and selection operators, scope-expressions and conditionals,

but does not contain assignment or fill expressions. We discuss the interaction of assignment

and environment inferencing in Section 6.1.6.

6.1 Environment Inferencing

An environment inferencing system is an extended type inference system that can be used to

deduce information about the names defined by an expression. As discussed above, the relevant
2 For the purposes of this discussion, we ignore the presence of the apply-env operator.
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question is how to statically determine the evaluation environment of an identifier found in the

body of a scope-expression. Why should we assume that the problem is even a tractable

one? One distinguishing property of the subset of Symmetric Lisp of interest to us here is the

fact that the core language3 does not allow names to be generated dynamically - there is no

such thing in the language as a "name-yielding expression". This restriction means that the

compiler knows every name defined by the program and, moreover, the compiler also knows

all the names defined by any given map. (In the full language, operations like read destroy

this pleasant property - the object returned by read may include names not defined elsewhere;

read, in other words, is indeed a name-yielding operator.)

The inference system defines a collection of inference rules that relate expressions to types.

The type of an expression gives information about the structure of the object defined by that

expression; in the type domain of interest to us here, environment-yielding expressions will have

a type that will give information about the types of its region as well as information about the

names it defines. In the next two sections, we define the syntax and semantics of types in our

system; Section 6.1.2 describes the notion of substitution used to capture polymorphism in our

type rules and Section 6.1.3 discuss the subtype relation ordering on types. Section 6.1.4 defines

the inference rules.

6.1.1 Syntax

8.1.1.1 The Expression Language

Assuming a set of identifiers z, the language SLo of expressions e of interest is given by the

following grammar:

Terminal and keyword symbols are shown in type-writer font, and non-terminals are displayed

in roman font. Alternatives are separated by double vertical bars (1). The form {Exp}" indicates

that Exp may be repeated zero or more times; the form < Exp > indicates that Exp is an

optional expression:

Expr ::- Integer and Boolean Constants
Id
(lambda (Id) Expr)

3 For the present discussion, we consider the language as defined in Chapter 2 to constitute the "core" language.
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(Expr Expr)
(select Expr Id)
(with Expr Expr)
Expr[Expr]
(if Expr Expr <Region>)
Arithmetic Operations, Boolean Operations
(map {Id : Expr}*)

The subset of Symmetric Lisp used in this chapter consists of maps, name and region selec-

tor operations, lambda abstraction and application. In addition, the subset includes scope-

expressions, conditionals as well as some basic arithmetic and boolean testing forms. All user-

defined functions are assumed to be single-arity and applications of lambda-defined :.nctions

take only a single argument. Note also that we assume each region in a map is name-.

6.1.1.2 The Type Language

Every expression in the expression language is associated with an element in the type language

by the inference system. We present the syntax below and describe the semantics of the type

elements following:

Type-Scheme Type I Va Type-Scheme

Type ::= Type-Variable I Primitive-Type I Map-Type I Function-Type I T, I -I-t
Occurrence ::= a I nI T, I -Lo

Primitive-Type ::= Integer I Boolean
Type-Variable ::= a and its subscripted and superscripted variants

Map-Type ::= (M,O)
M ::= ML I Mr I M[Id -+ Type]
0 ::= On IOT O[Id -- Occurrence]

Function-Type ::= Type - Type

There are four basic types in our type language: (1) type variables, (2) primitive types, (3) map-

types, and (4) function types. In addition there are two special type constants: Tt indicating

4This is not a very strong restriction; it is easy to exhibit a transformation that takes a Symmetric Lisp map
containing unnamed regions into one that contains only named regions if we simply associate a unique identifier
to each unnamed region in the original map.
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an "inconsistent" type and .Lt indicating a "least" type; Tt is a supertype of all types whereas

-Lt is a subtype of all types.

Type-schemes define polymorphic or generic types; an expression that has a polymorphic type

may be used in a number of different type contexts. A polymorphic type may be instantiated to

a more refined type by appropriate substitution of type variables for types; a monotype is a type

containing no type variables. The treatment of polymorphism in our type language is similar to

its treatment in the paradigmatic polymorphic language, ML[24, 50]; readers unfamiliar with

the ML polymorphic type system are encouraged to review the cited references. Notation: We

will often abbreviate a type-scheme

Val Va2 ... Var

as

WfI(a2 ... Cin '"

Notation: Throughout this chapter, we shall use r (and its subscripted variants) to range over

types and 6 (and its subscripted variants) to range over type-schemes.

Environment-yielding expressions are associated with a map-type. A map-type is a pair of

functions, the first component maps Symmetric Lisp identifiers into types, and the second

component maps Symmetric Lisp identifiers into occurrences. The role of the first component

in the pair is to associate every region in a map with a type; the role of the second component

is to provide information on whether a given identifier is defined by the map or not. Recall that

an identifier defined by an environment-yielding expression may be in one of three contexts: (1)

the name is always defined by the expression, e.g., we can always assert that a map object with

regions named x and y always defines x and y, (2) the name is never defined by the expression,

e.g., we can always assert that a map object with regions named x and y never defines a region

named z, or (3) the name is inconsistently defined by the expression, e.g., consider the names

defined by z as defined in the body of function f shown earlier. Identifiers which fall into the

first case are mapped to occurrence element a, those which fall into the second category map

to occurrence element n, and those that fit the third condition map to occurrence element

T,. The fourth occurrence element 1,L is used only for technical completness. Because our

inference rules will require us to compute joins and meets of occurrences, it is necessary that

occurrence elements form a lattice structure; 1, is used to complete the lattice. No well-typed
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environment-yielding expression will ever map an identifier to Io. The semantics of map-types

is explained in greater detail in Section 6.1.4.1.

Notation: We use a to range over occurrences and M and 0 (and their subscripted variants)

to represent map-types. If (M,O) is a map type, then M(x) denotes the type to which x is

mapped by M, and O(x) denotes the occurrence to which x is mapped by 0. We call M a type

environment and 0 an occurrence environment.

Functions are associated with a function-type that maps over the type domain. Function types

and map-types are the only constructors in the type language; they are the only types that are

built from other types.

We will explain the role of these types in greater detail below. Before doing so, however, we

first explain the notion of substitution which is a crucial part of our polymorphic type system.

6.1.2 Substitutions

A substitution, S, is a mapping from type variables to types. If r is a type, then Sr is written:

7[lt, -.., an

and denotes the type obtained by replacing each free occurrence of ai in r with ti. (We assume

that t, $_ a,.) We say that Sr is an instance of r. Intuitively, a substitution refines a type

expression, i.e., a substitution constrains a type expression by removing some type variables.

A type-scheme

6f = VC I 2 ... a, 71

has a generic instance

= VlO'2 ... a r 2

if r2 = [ri/ai] for some types r,9',.., and where the ao are not free in b. A type instantiation

of this form is written b > 61. Note that ordinary instantiation acts on bound variables whereas

generic instantiation acts on free variables. It follows that 6 > 61 implies $6 > S61. For

example, the type-scheme:

Va2(Integer - a2 --- (Integer - a 2))
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is a generic instance of the type-scheme:

Vala 2(al - a2 (al - a2 ))

Ordinary instantiation eliminates free type variables whereas generic instantiation eliminates

bound ones. Because only bound variables are eliminated in a generic instantiation, one can

instantiate such a type subsequently with new types. Thus, by appropriate use of quantifiers,

it is possible to model general polymorphic behaviour. For example, the polymorphic identity

function may be expressed as the type-scheme, Va a -+ a. In this definition, a is a type-

variable and the quantification makes the type generic. When we instantiate this type (e.g.,

consider a substitution of type Integer for a), the resulting type is Integer. A comprehensive

description of polymorphic type systems may be found in [18].

6.1.3 Subtyping

We would like our environment inference system to be as flexible as possible while still prohibit-

ing obvious type violations (e.g., using an integer as a procedure etc.). In thinking about how

to structure our type domain to support this goal, we are led to ask how the types of different

map structures relate to each other. Consider, for example, the following two map objects:

1 (map l :el
n2 e2 )

and

M2 (map nl e3
n2 e4
n3 es )

It is clearly the case that, provided el and e3 are of compatible types and e2 and e4 are of

compatibile type, N2 can be used in any context that Mi can 5. For example, assuming that

all the ei are integers, one can use M2 in any place that it is appropriate to use Ni since such

contexts will never require the presence of n3. M2's type, in other words, can be regarded as a

subtype of Ni's type. The importance of ordering map expressions under a subtype rule can be

further appreciated when we consider the following example:

f : (lambda (I)
5 Actually, we should qualify this assertion: an expression of the form (with < M > ... n3 ... ) where M is

either 1 or N2 may not be type-correct if the use of n3 is inconsistent with its type in 42.
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-r

0
a <>

Figure 8 : Structure of the Occurrence Lattice

(select I n))

g (f (map n: 2))
h (f (map a: 3

a: 4
o: 6))

f defines a lambda abstraction that projects the name a from its argument map object, I. There

are two calls to f in the above fragment: the first applies f to a map that binds n to 2, the second

applies f to a map that contains three bindings, one of them being a binding that associates a

to 4. It would be certainly correct to consider this fragment as being well-typed since the only

constraint imposed by the select operation is that its argument map object (here 1) define a

binding for n.

Our type system includes a subtyping rule on all types that allows program fragments like that

shown above to be considered well-typed. We define the subtype relation as follows:

Definition 6.1 Let 71 and r2 be two types. Then,

1. r E Tt for any type rl.

2. It Ct ri for any type r.

3. r1 Ct 71.

4. If 71 = (MI,0 1 ) and 72 = (A1 2 ,0 2 ), then r C-t r2 if for every x E Id, Mi(x) Ct M 2 (x)
and O1(z) E;, 02(x) where E, is defined by the lattice shown in Figure 8.

5. If 72 9t 1 and r3 9t 74, then (ri - 3) ;t (72 -- 74)

The subtyping rule for map-types takes into consideration the value of the occurrence elements

associated with the names in the two map-types. If an environment-yielding expression always



6.1. ENVIRONMENT INFERENCING 157

or sometimes defines a particular name, then the type of the region to which this name is

bound is relevant in determining whether it is a supertype of another map-type. Thus, a type

environment M1 is a subtype of M 2 if for each name x possibly defined in M 2, M1 also possibly

defines x, and, moreover, x's type in M1 is a subtype of x's type in M2.

Occurrence elements are themselves ordered under a very simple subtype relation: an occurrence

element of a or n is a subtype of occurrence element T, and are supertypes of J,; moreover,

a and n are themselves incompatibly related under the subtype rule. The intuition behind

this is simple: an occurrence element of a or n imposes a greater constraint on the structure

of the associated map object than an occurrence element of To; T, indicates contradictory or

inconsistent information regarding the presence of a name whereas a and n do not.

The subtype relation rule for function types is interesting because the subtype constraints are

inverted for the domain. Intuitively, we would like a function

f: rl -* 73

that is a subtype of a function

g :2 - "4

to operate in all contexts where g is applicable. This means that f's domain, r", should be less

constrained than g's, r 2 (i.e., r2 gt rl). Moreover, because f is a subtype of g, we expect f's

range, r3, to be more constrained than g's, r4 (i.e., r3 Qt r4). For example, suppose that f

is a function whose domain is a map-type that always defines names n, and n2 and suppose

that g is a function type whose range always defines n3 and n4. We consider f to be a subtype

of g if (a) g's domain defines at least n, and n2 and, (b) f's range defines at least n3 and n4.

This would allow f to be applied to any object to which g could be applied and would treat

the object returned by f to be more constrained than the object returned by g based on the

subtype rule for objects. This subtype rule is, in fact, similar to the one used by Cardelli in

inferring subtype relations among record objects [16] used in a multiple-inheritance system.

In addition to a subtype relation on types and occurrences, there are two important binary

functions used extensively in our inference system. The first is a join function (written Ut) and

the second is a meet function (written nt).

The Ut of two types is a supertype of these two types; r1 Ut r 2 is a type r3 defined such that

ri Ct r 3 and r2 Q r3. The flt of two types is a subtype of these two types; r nt r2 is a a type
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r3 defined such that r3 E t r and r3 Ct r2 .

We define these two relations formally as follows:

Definition 6.2 Assume r (and its subscripted variants) are types. Then,

1. Ti Ut Ti = Yi.

2. (Tt Ut ri) = (r, Ut Tt) = Tt.

4. If r, and r2 are primitive types such that r, r2, then r Ut r2 = Tt. Similarly if r1 is
a function type and r2 is a non-function type, then r Ut.r2 = Tt. (A similar rule applies
if Ti is a map-type and r2 is not.)

5. If r = (M 1,0 1 ) and r2 = (M 2,0 2), then r Ut r2 = (M 3 ,0 3 ) where

M3(x) = MI(x) Ut M 2(x)

and
03(X) = 01(x) Uo 02(X)

where U, is a join operator defined over occurrence elements in the obvious way given the
structure of the lattice shown in Figure 8:

6. (ri - r2 ) Ut (r3 - r) = (r, nt r3 ) - (r2 Ut r4 )

Definition 6.3 Assume r (and its subscripted variants) are types. Then,

1. 71 r"t ri = Ti.

2. (T, nt rl) = (r, nt Tt) = rl.

3. (-t nlt T) = (Trnt ±) = It.

4. If ri and r2 are primitive types such that r $ r2, then r lrt r2 = -Lt. Similarly if rT is
a function type and r2 is a non-function type, then T" nt r2 = Lt. (A similar rule applies
if T1i is a map-type and r2 is not.)

5. If ri = (M 1,01) and r2 = (M 2 ,0 2 ), then r f-t r2 = (M 3 ,0 3 ) where

M3(x) = Mi(x) ft M2(x)

and
03(x) = O1(X) flo 02(X)

where n. is a join operator defined over occurrence elements in the obvious way given the
structure of the lattice shown in Figure 8:

6. (r - r2) nt (r3 - r4) = (r Ut r3 ) -- (r2 fl, r4)

If M is a type environment, then Ult M denotes the join of ali elements in M s range. A similar

operation exists over occurrence environments and meets of type and occurrence environments.
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6.1.4 An Inference System

Our heretofore informal description of types and occurrence elements can be made precise by

formalizing the notion of a syntactically well-typed expression. An expression is considered

well-typed if a type can be deduced for it based on the rules constituting the type inference

system. If no type can be deduced for an expression, we consider the expression ill-typed. A

type-system is semantically 5ound if the meaning of any expression as specified by the formal

semantics for the expression language is consistent the denotation of the type deduced for that

expression by the type-system.

The environment-inference system itself does not define a type-checking algorithm; there will

be many possible types that can be deduced for the same expression given different algorithms.

Provided that the inference system is sound, these types are all consistent with one another in

the sense that they are all refinements of some principal (or most general) type.

The axioms and inference rules for the type system are presented in a form similar to Gentzen's

calculus of sequents[36]. Each inference rule consists of a set of statements (which have already

been defined using the usual notation, I-, for sequent) called the antecedents and a statement

called the consequent. In writing an inference rule, we separate antecedents and consequents

by a horizontal line; axioms have no antecedents and no horizontal line is drawn.

We use the symbol A to represent the current type environment; A maps identifiers to types.

We use the notation

Al- e:r

to indicate that expression e has type r given the type bindings defined in A. Our initial type

environment maps every identifier to, It, the least type in our type domain.

We reiterate our naming conventions: r (and its subscripted variants) are used to range over

types, 6 (and its subscripted variants) range over type-schemes, and M and 0 (and their

subscripted variants) range over the type and occurrence environments (resp.)

6.1.4.1 Semantics

If (M,O) is a map-type, then the expression M[x .-+ r] where r is some type defines a new

type environment as follows:
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M[X - Tl ! M(Y) if y# 54

r otherwise

A similar construction can be applied over 0.

The constant function M. defines a type environment that maps every identifier to lt; MT is

the constant function that maps every identifier to T t .

The constant function On maps every identifier to occurrence element U; Or maps every iden-

tifier to occurrence element T.

In general, we shall use the notation:

Ms[n, -- r,n2 " r2,...,nk - rk]

to indicate the type environitient that maps ni to ri, 1 < i < k and maps all other elements

to type s. A similar notation applies to occurrence environments as well.

8.1.4.2 The Type Rules

Type Axioms

There is one type axiom: A I- x : A(x). This axiom states that the type of an identifier is the

element to which it is mapped by the current type environment.

Instantiation and Specialization

There are two rules for instantiation and specialization of type variables.

(Type Variable Instantiation)

A!- e:6

A!- e:b'
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(Generalization)

Al- e:r

a not free in A

Al- e:Var

The first rule corresponds to type variable instantiation: given a type containing a type variable,

we can always refine the type by substitution of free type variables for types in the type

expression.

The second rule is a generalization rule that forms the basis for our polymorphic type system:

given a type r, we can make it a generic type by quantifying it over a new type variable. Thus,

to make a type expression r containing a free type variable a generic, we can replace r with

a type-scheme in which a is a bound variable. These two rules are, in fact, identical to the

instantiation and generalization rules found in ML[24].

Type Rules for Environment- Yielding Expressions

There are two environment-yielding expressions in our restricted language: iap and select.

(Map Introduction)

A[ni-- ri] - ei :ri, 1l< i < k

A l- (map n1 : el ... : ek) : (M..[ni - ri],On[ni - a])

The map introduction rule allows mutually-recursive references within a given map expression;

the type environment in which the subexpressions of a map are typed contains the type bindings

of all names defined within the map. Thus, free references to names bound within the map will

acquire the type of the expression to which that name is bound in the map. For example, the

type of the map

(map
x: y
y 3)

would be a pair, (M,O); M maps x and y to type Integer and all other identifiers to some type

variable; 0 maps x and y to a and all other identifiers to n.
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(Projection)

A4 I- e I :('1,O0)

M(x) = rl,O(x) = a

A F- (select el x): (ML[x T71,0 1 ,[ a])

The type of a projection expression is a map-type whose type environment maps the name

being projected with its type in the original environment and whose occurrence environment

maps the projected name to occurrence element a. Note that the antecedent requires that the

projected name be present in the original environment. This constraint is consistent with our

operational semantics: a projected name must be found in the environment onto which it is

projected.

Scope-Expressions

We introduce a new operator, ==, in the type rule for a scope-expression that builds a new

type environment from two existing ones. We give its definition here and explain the intuition

behind the definition in the discussion following.

Definition 6.4 Let Al and A be type environments and let 0 be an occurrence environment.
Then 0 =: (Al, A) is a type environment defined such that:

M(x) ifO(x) = a

(0 ==. (h, A))(x) A(x) if O(x) = n
, M(x) Ut A(x) if O(x) = T,

It if O() = -.

Given :=* we can express the inference rule for scope-expressions as follows:

(Scope- Expressions)

A- el :(M,0)

0 (M,A) - e2 :rl
A F-(with el e2) : r,
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The type of the scope-expression body is determined by the type-environment constructed by

performing a composition operation on the lexical type environment A and the type environ-

ment associated with the type of the environment-specifier M. The structure of this new type

environment is determined by the occurrence environment of the scope-expression: the type of

a name that is always defined by el is simply the type to which it is mapped in M; the type of

a name that is never defined by el is simply the type to which it is mapped in A; a name which

has an inconsistent occurrence in M acquires a type that is the join of its type in M and A.

This rule captures our intuition about scope-expressions in the following sense: if a name

is known to be defined by the environment-specifier, we can ignore its type in the lexical

environment since it will never be used in determining the type of the scope-expression body.

Similarly, if a name is known to be never defined by the environment-specifier, we are assured

that its type in the body will be its lexical environment. The third condition applies if a name

n is inconsistently defined by environment-specifier; in this case, we choose to make n's type

in the scope-expression a supertype of its type in the lexical environment and its type in the

environment-specifier (when it is present). This will make n's type in the scope-expression

consistent with its type in the lexical environment and its type in the environment-specifier.

Type Rules for Abstraction and Application

(Abstraction)

A[x " 1l - el : -2

AF (labda (x) el) : -- r2

The inference rule for lambda abstraction with slight modification can be used for defining the

type of a kappa abstraction expression as well.

In words, this inference rule is to be read, "If, assuming a type environment A extended with

a type binding r, for x, we are able to derive the fact that expression el has type r 2, then the

type of a lambda abstraction whose body is el and whose formal is z is a function type from

r1 to "2."
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Notice that rl is a free type in the inference rule; a type-checking procedure can assign any type

to 7 1 provided that it satisfies the constraints on the use of x in the body of the abstraction.

There may be many types that can be assigned to x that satisfy the necessary constraints; the

type actually assigned is determined by the type-checking algorithm employed.

(Application)

A - el :r 1 -* -2

A I- e2 : -r3

r3 Et 71

A I- (el e2) : T2

The application rule uses a subtype relation test that determines whether the type yielded by

the actual is a subtype of the type of the formal. To see why such a test is needed, consider

the following example:

f (lambda (N)
(select N X))

g (f (map x:i y:2))
h (f (map))

Note that based on the inference rule for abstraction and projection, one possible type for f

could be:

Such a type assignment for f would allow it to be applied to any map-object that defines at least

x. In other words, the minimal (i.e., least constrained) type assignment for N that would still

satisfy the inference rule for name projection would be one in which N's occurrence environment

maps x to a. The application of f to the map object defining names a and b is well-typed

because the type of the actual is a subtype (i.e., defines more names) of M's type. On the other

hand, the application of f to the empty map is not well-typed (as should be expected) since

the type of the actual (here, (M,,On)) is not a subtype of the formal.

Conditional and Selector Operations
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(Conditional)

A I- el :Boolean

A- e2: "

A e3:2

73 = i t r2

A I- (if el e2 e3): r3

The arms of the conditional must be related together by the Ut operation. To see why, consider

the following example:

a: (it b

(map x :)
(map X 1

y 2))
(with a y)

The type of the conditional is the join of its two arms; the type of the true arm is a map-type,

(Mt,Ot) - Ot maps z to a and all other identifiers to n; Mt maps x to Integer and all other

identifiers to It. The type of the false arm is also a map-type, (Mf,Of) - Of maps x and

y to a and all other identifiers to n; M! maps z and y to Integer and all other identifiers to

It. The join of these two types is a map-type, (Mi,Oj) where Oj maps x to a, y to T, and

all other names to n and Mj maps z to Integer and y to Integer. If m is subsequently used

in a scope-expression in which y is free in the body, y's type in the evaluation environment

of the scope-expression must be compatible with Integer by virtue of the ==* operator; an

incompatible type in the lexical environment will result in y's type in the body being Tt.

The Symmetric Lisp type rule for conditionals differs from ML's because of its join rule. Note,

however, that the type system does not support dependent types[49]: the type of a conditional

whose arms are of unrelated type is always Tt. Practical experience with the language indicates

that one rarely needs to define objects of completely different type in different arms of the

conditional. In particular, it is hardly ever the case that one needs to define a conditional in

which the two arms define map objects which are unrelated to one another.

(Selection)
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Ai- ei :(M,O)

A I- e2 Integer

A - el[e2] : UtM

The type of a region selection operation is computed by taking the join of al types mapped

by the type environment associated with the argument map's map-type. Readers will note the

strong similarity between this type rule and the type rule for conditionals. In the case of the

conditional, it is necessary to compute the join of the two arms; in the case of the selector, it

is necessary to compute the join of all types in M's range.

6.1.5 Examples

The type inference rules given in the previous section constitute a set of constraints on a

program which, if satisfied, implies that the program is well-typed. In principle, a type-checking

algorithm based on these inference rules will set up a constraint system and then solve it with

respect to the free variables found therein. There will often be several possible solutions to a

set of constraints; the one actually constructed is a property of the type-checking procedure

used.

Example 1

Consider the program fragment:

y : nil
f: (lambda (x) (with z y))
(f (map

y : 3))

The type constraints for this program fragment are:

Initial Assumption
[1] A M±

Expression Type

[2] nil Boolean
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[3] y Boolean

[4] x (M,O)
[5] y a

[6] (lambda (W) ... ) (M,O)-* a
[7] f (M,O)-. a

[8] 3 Integer
[9] y Integer
[10] map y 3 (Mj[y -* Integer],On[y -. a])

[11] (f (map ... )) a

Additional Constraints

[12] (0 =* (M,A[y * Boolean]))(y) = a
[131 (M.[y,-4 Integer],On[y - a]) Q (M,O)

Line [1] defines the initial type environment. Lines [2] and [3] define the type for the outermost

binding of y. Line [4] constrains z to be a map-type based on its use in the scope-expression.

Line [6] defines the type of the lambda. Line [10] constrains the type of y : 3 to be a map-type

where y's type is Integer and y's occurrence element is a. The type of the application is given

in line [121.

Besides these constraints, there are two additional subtyping constraints. Line [12] constrains

M (the type-environment for x) and A (the lexical environment) under the ==, constructor; it

states that the M and A must have a type such that y has type a under ==*. Line [13] defines

the sutype constraint between the type of the actual parameter in the application,

(Mj.[y -* Integer],On[y -* a])

and x's type, (M,O); this contraint specifies that the actual's type must be a subtype, i.e.,

must be more constrained than the type of the formal.

We can consider a set of constraints as a being nothing more than a set of equations with some

free type variables; the role of the typechecker is to solve this set of equations with respect

to these type variables. In the above example, M, 0, and a are the free type variables. One

meaningful assignment of these variables would be to instantiate M to Mj[y - Integer] and

0 to 0 to On[y -' a]. Given this assignment for M and 0, a must get instantiated to be

Integer. Such an assignment would fail if there weio a subsequent application of f in which y

was bound to a string; the actual would not be a subtype of (M,0) in this case.
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Note also that a type assignment in which 0 is instantiated to be 0 1n would not satisfy the

subtype constraint imposed by line [13]. Such an assignment would be caught by the type-

checker since it would violate the subtyping constraints over map-types.

Example 2

We consider another related example:

e : ((lambda x)

(with X
(map w : y)))

(map y 2
z 4))

One could define a system of type constraints for this expression as follows:

Initial Assumption
[1] A MI

Expression Type

[2] 2 Integer
[3] 4 Integer

[4] (map y:2 z:4) (M±[y -+ Integer,z - Integer]

On[y - a, - a])

[5] x (M,O)
[6] y
[7] (map v : y) (M±[w.-* a],On[. - a])

[8] (lambda x) ... ) (M,O)-- (M±[w -- a],On (9 '- a])

[9] * (M±t[,,L- ],On[wi- a])

Additional Constraints

[10] (0 = (M,A[x -* (M,O)])) (y) =
[11] (MO) t(M±[y 1- Integer, z .-* Integer],On[y -- a,z - a])

Line [1] specifies the constraint on the initial environment. Lines [2] and [3] express the con-

straints for the predefined integer constants 2 and 4. The type axiom and map introduction

rule impose the type constraint on the argument map expressed in line [4]; it states that the

type of the map
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(map y 2
z 4)

is a map-type, (M±[y - Integer,z '.* Integer],On[y '-+ a,z " a]).

Lines (5] - [7] specify the type constraints imposed by the scope-expression. Line [5] constrains

x to be a map-type and line [6] sets the type of the free variable y in the scope-expression body

to be a type variable a. Line [7] constrains the type of the scope-expression body based on the

type axiom and the map introduction rule.

Line [8] specifies the type of the lambda abstraction and line [9] gives the type of the application;

this constraint is derived using the application rule based on the type inferred for the abstraction

from line [8].

Lines [10] and [11] are the subtyping constraints given in the inference rule for scope-expressions

and the application rule. Line [10] places a constraint on both M and A[x '-. (M,O)], the

current lexical environment, by associating the type of y to be a in the type environment yielded

by the =:* constructor. Line [11] specifies the subtype constraint between the actual and the

formal in the application.

Typechecking a consists in (1) showing that the system of constraints is consistent (e.g., it should

not be possible to show that an Integer type = a map-type), and (2) solving the constraints

with respect to a, M and 0 which are the three free variables defined in the equations.

There are several possible solutions to this constraint system. One trivial solution would be to

simply set M to MT and 0 to OT. a would then become the join of T and whatever the type of

y is as specified by A; by definition of the UtJ operator, this type will always be Tt. The type of

* is then a map-type that associates v with Tt and all other elements with It. This is certainly

a "correct" solution insofar as it satisfies all the necessary type constraints, but it is not a very

useful one since it unnecessarily overconstrains y. Given this type assignment, the map object

bound to a can never be treated as a subtype of one that has a non-Tt type assignment for y.

A more useful approach to assigning types would be one that imposes the minimum constraints

on the free type variables while still satisfying all the necessary conditions. For example,

consider a solution that assigns M [y --* Integer, z t-* Integer] to M and On[y - a,z '-- a]

to 0. The type of a now becomes constrained to be Integer as per the definition of the =:.

function. This assignment also constitutes a valid solution since no constraints are violated,

but it imposes a minimum constraint on M, 0, and a - it is the most general (or principal)
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type for the above expressiot and arguably the most useful. A type-checking algorithm that

computes the principal type computes the least solution to a series of constraint equations.

Example 3

We now consider an example involving select and higher-order functions:

f : (lambda x)
(it x

(lambda (g) (select g p))
(lambda (h) (select h q))))

f defines a higher-order function that given a boolean returns either a function that selects

name p from its argument map or a function that selects name q from its argument.

The system of type constraints for this function can be given as follows:

Initial Assumption
[1] A M.

Expression Type

[2] x Boolean

[3] (select g p) (M±[p - i al],On[p - a])
[4] g (M 1,0 1 ) where Mi(p) = a, and O(p) = a

[5] (lambda (g) (select g p)) (MI,O 1)- (M[p - cri],On[p- a])

[61 (select h q) (M[q" 021,On[q- a])
[7] h (M 2 ,0 2 ) where Ml2 (q) = a2 and O2(q) = a

[8] (lambda (h) (select h q)) (M2,0 2)-- (M.[q- al,On[q' a])

[9a] (*) = (M.l[p-* ol],On[p- a]) Ut

(M.[q- a2],On[q - a])
[9b] (if x ... ) (MWO)nt (MV2,02)- (*)

[10] f Boolean- ((M,0)nt (M2,02)-- ()

Line [1] assumes the intial type environment is M.L. Line [2] is derived from the inference rule

for conditionals. Lines [3] and [4] define the constraints imposed by the projection rule. Line

[3] states that p has type a1 (where a, is a free type variable); Lines [4] constrains g to be

a map-type such that its type environment map p to a, and its occurrence environment map

p to a. Line [5] is the type constraint introduced by the abstraction rule. Lines [6] - [8] are
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rules similarly defined for the false arm of the conditional. Lines [9a] and [9b] impose the type

constraints specified by the conditional: the type of the conditional is the join of the types of

its arms. Finally, line [10] defines the constraints imposed by the conditional inference rule and

the abstraction rule. (Were we absolutely precise, we would have also introduced a separate

type variable for x; the constraint system would instantiate this variable to type Boolean.)

There are six free type variables in this constraint system. Rules [4] and [7] constrain the type

variables introduced for the map-types of the two lambda expressions. Here again, there are

many possible assignments for the free variables that would satisfy the constraints. The most

general type assignment would associate the following types to the map-type variables:

WM,01)= (MT[p- all,OT[P al)

and

(M2,0 2 ) = (M[q - a2l,OT[q - a])

This type assignment imposes a minimum constraint on the occurrence environment of g and

h since it enforces no restriction on the occurrence of any identifier outside of the one actually

being selected.

Given this assignment, the join of the two functions can be computed. The join of two functions

is determined by taking the meet of their domains and the join of their ranges. Given the above

assignment for g and h, we can compute their meet to be:

(MT[pt-4 al,q- a2,OT[p-'- a,q'-- a]) (,)

Notice that the function returned by I can be applied to any map object that defines p and q

and that the type of p and q in the argument map is unconstrained by the type definition.

A type assignment for the conditional can now be derived:

* ---+ (M.L [p - ct, q - a2], On [P -- To, q -, To]))

We can instantiate cf and C2 to be type-schemes by making them bound variables of a universal

quantifier defined at the outermost level of the above type. This assignment makes makes p

and q generic objects: their types are totally unconstrained.

What can we infer about this assignment? Clearly, it allows the function returned by f to be

applied to any function that defines at least p and q. Moreover, the type of the result yielded
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by this function states that both p and q are defined inconsistently - it cannot be guaranteed

that either identifier is found in the result.

6.1.6 Incorporating Assignment and Empty Regions

Empty regions and assignment complicate the type rules. The fundamental problem has to do

with the interaction of polymorphism and mutable objects. To see why this is an issue, consider

the following expression that can be constructed using the full language:

f : (lambda ()
x (3ap *)
g (lambda (a b)

(it a
(fill x[13 b)
x[1])))

h : (f)

What should h's type be? The type of the object returned by f is a function that given some

boolean a and some polymorphic object b, side-effects the first element of an own variable map

x defined in f with b if a is true and returns the first element of x if a is false. Notice that the

type of x[l] should be the same type as b since the fill operation fills z[I] to be b if a is true.

One possible type we might expect a type-checker for the full language to associate with h

would be of the form:

Boolean x a --+ a

Intuitively, this type assignment says that given a boolean and an object of some type a, h will

return some object of type a. (This assumes that the fill expression constrains the type of

the region being filled to be the same as the type of the object which is going to occupy it.)

Now consider the effect of evaluating the following two expressions in sequence:

(h t t)

and

(+ (h nil 5) 6)

In a fully polymorphic type-system such as the one given in this chapter, both applications

would be considered well-typed; the first instantiates a to be a boolean, the second instantiates

a to be an integer. Note, however, that the first application performs a side-effect on x by

filling x's first region with a boolean value. When the second application is evaluated, the value
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of x[13 will be the boolean, t, not an integer as is expected. When the addition operation is

performed, a runtime type error would result.

The basic problem has to do with the genericity of a; because of the presence of side-effects in

g, we need to make a non-generic across applications. Thus, the type of f after h is first applied

should become constrained to be

Boolean x Boolean - Boolean

Subsequent applications of h should conform to this type. Given the ability to distinguish

between generic and non-generic type variables, the second application of h above would raise

a type-error as is to be expected. In the type system presented thus far, however, functions

are instantiated generically; the effect of updating a storage location is not reflected in the

expression's type.

It is possible to handle empty regions and general assignment in a polymorphic type system,

but doing so involves augmenting the type system so that it keeps track of objects which are

mutable and those which are not. For a more comprehensive account of how one might handle

mutable structures in a polymorphic type-system, the reader should see [63]. An alternative

approach using effect inferencing is presented in [37]; effect inferencing can be used to determine

the observable side-effects that an expression may have when evaluated.

6.1.7 Soundness

The inference system given in this chapter constitutes a syntactic inference system - the in-

ference rules are structured based on the form of the expression; it makes no assertion on the

relationship between an expression's meaning or denotation and its type. In order to formally

show that the inference rules capture our notion of what a well-typed program should be, we

need to define a denotational semantics for the expression language that relates expressions to

elements in an abstract mathematical space. We can then construct a precise definition of what

we mean by a well-typed program by treating a type as defining a subset in this abstract space.

We do not define a formal denotational semantics in this thesis; we leave it to the reader's

intuition to convince himself that the inference rules given above do capture the notion of what

we mean by a well-typed expression.

We can, however, sketch the basic structure of the formal semantics as follows; the actual

construction of the semantic clauses is omitted. The basic semantic function E has the following
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domain equation:

£:Exp-* Env- V

where Exp defines the category of expressions and Env = Id -, V defines the environment

function that maps identifiers to their abstract values; V is the value domain. We assume that

there are two special values in V called -lt and ±v used to model runtime type errors (e.g.,

using an integer as a function, etc.) and runtime exceptions (e.g., asking for the 10th element

in a 9 element map, etc.), resp.

Intuitively, a well-typed program will never return .Lt at runtime. For example, a projection

expression that attempts to select a name x from some map that does not define x will acquire

value ',,t; this error should be captured by . ype-checker that implements the type rules.

Similiar reasoning applies to all occurrences of ±I.t in the formal semantir. : .L-,,t is to be thought

of a runtime type error that can be captured at compile-time by a type-checking system.

A type is thought of as a set of values; every element in the value domain except -,t and ive

is an element of some subset of V that does not contain -L,t or -L,,,. We define V to be the

semantic function that maps type expressions to the set of elements in the value domain which

the type denotes:

D :Type -- P(V)

If it is possible to deduce that e has type T, then the value denoted by e belongs to the domain

denoted by r. Occurrences in this framework are projections on types; they axe used to select

a subset of the set of elements denoted by a type.

Following Cardelli[16], we say that a type environment A agrees with a semantic environment

S if for any x, Slx E Diun = A I- x : T. We relate the semantics of SLo with the syntactic

type rules in the following conjecture:

Conjecture 6.1 If S agrees with A, and A I- e : r, then C[eS E D[r]

The proof of this theorem and the construction of the semantic domains are left for future

research.



Chapter 7

Compiling Into a Dataflow Language

The Symmetric Lisp code-generator has the responsibility for translating Symmetric Lisp ex-

pressions into a suitable base language. The parallel semantics of maps imposes two non-trivial

requirements on the base language. First, because a map is a parallel process creator (eval-

uating a map with n elements creates n parallel threads of computation) it is necessary that

the base language provide efficient support for fine-g'ained parallelism. Secondly, because a

map is a non-strict data structure (a map object is available for inspection even if not all of

its elements have finished computing) it is necessary that the base language provide efficient

synchronization mechanisms to support non-strictness.

Because of the need to have base language support for fine-grained parallelism and non-

strictness, we choose to compile Symmetric Lisp programs into the language of dynamic dataflow

graphs[6]. Dataflow graphs have several important strengths that are especially useful in im-

plementing Symmetric Lisp.

1. Dataflow graphs impose minimum constraints on parallelism: the execution of a dataflow
instruction is constrained only by data dependencies; the execution semantics of a dataflow
language imposes a partial (rather than a total) order on instruction execution. As a conse-
quence of this property, every instruction in a dataflow program is potentially executable,
capable of executing concurrently with any other instruction whose data dependencies
have been satisfied.

2. It is straightforward to provide support for non-strict data structures in the context of a
dataflow execution model. An instruction which accesses an element of a non-strict data
structure whose value is still being computed1 blocks until the value becomes available.

3. The compilation of high-level languages into dataflow graphs has been well-studied [26,
64]. The translation of high-level constructs such as let-blocks, functions, application etc.

'Such elements are typically implemented using I-structures[7] or early-completion queues[25, 26]

175
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follow very straightforward translation rules that are amenable to significant optimiza-
tions.

There are two approaches that can be taken to describe the translation of Symmetric Lisp

expressions into a dataflow graph base language. The first approach would entail exhibiting a

direct translation from Symmetric Lisp into actual dataflow schemata. Presenting the trans-

lation rules this way has the advantage of explicitly relating Symmetric Lisp expressions to

their dataflow graph counterparts, but the discussion would necessarily involve introducing a

significant amount of machinery to describe the semantics of the dataflow graph language. An

alternative approach and the one we choose in this chapter is to exhibit a source-to-source

transformation from Symmetric Lisp expressions into another high-level language for which the

translation into dataflow graphs is already well-understood. This approach has a significant

advantage over the direct translation scheme since we avoid having to deal with the relatively

low-level language of dataflow graphs; the exposition (presumably) will be correspondingly

easier to understand.

The language we choose as our target language is Id[53], a high-level functional language aug-

mented with a parallel data-structuring mechanism called I-structures. Like Symmetric Lisp,

the semantics of Id specifies that all data structures and applications be non-strict. The lan-

guage supports abstract data types, powerful composition constructs for lists and arrays, general

loops, and curried higher-order functions. For a detailed exposition on Id and its implemen-

tation, the reader is referred to [8, 53]; the translation of Id into an abstract dataflow graph

representation is given in [64]. In describing the translation, we will sometimes require oper-

ations which have no straightforward implementation in Id. We implement these operations

either as abstractions or as new primitives.

The ability to transform Symmetric Lisp into Id implies that Symmetric Lisp and Id are equal

in expressive power in a weak Turing-equivalence sense: while the semantics of the Id repre-

sentation of a Symmetric Lisp program may be observationaly faithful to the semantics of the

Symmetric Lisp version, it should be kept in mind that the programming style. methodology

and particular paradigms encouraged by Symmetric Lisp are far different from that of Id.

For the sake of clarity, our translation performs no optimizations on either the source or target

code: as the reader will note, there is much room for optimization in the Id code generated by the

transformation operation. We also do not assume that presence of an environment inferencing
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algorithm; consequently, evaluating free variables in scope-expressions will necessarily involve

traversing an environment chain. We assume that there is no type-checking on the generated

Id program: thus, it may well be the case that the translated code shown in this chapter is not

type-correct according to the type rules governing Id expressions. Finally, our translation does

not consider Symmetric Lisp programs containing the read primitive. The set of identifiers

defined in programs containing read cannot be statically determined; the translation rules we

present here depend upon the ability to statically compute the set of all identifiers found in a

Symmetric Lisp program. We come back to this issue in Section 7.5.

7.1 Symbol Tables

A Symmetric Lisp map has no direct counterpart in Id. To help implement maps in Id we

introduce a new Id data abstraction called a symbol table. An instance of a symbol table is

a structure that associates strings to either integers or the special symbol, undef. The set of

strings in a symbol table S is referred to as S's domain and the set of integers to which these

strings are associated is referred to as S's range. The symbol table will serve as a repository for

the names defined within a map. It will be the primary structure used in the implementation

of scope-expressions. There are a number of possible representations for a symbol-table of this

kind; the most efficient representation in terms of access time would be a hash-table structure.

We leave the construction of the symbol table abstraction in Id as an exercise for the reader.

There are four main operations over symbol-tables:

1. make.symboltable: Given a list of pairs, <string, integer>, make.symbol.table returns a

symbol table containing a binding for each of the pairs input.

2. names-in_table: Given a symbol table S, names-in-table returns a list containing the

strings comprising S's domain.

3. get-val: Given a symbol table S and a string s, get-val returns the integer bound to s

in S if s is in S's domain or undef otherwise.

4. getsymbol: Given a symbol table S and an integer i, get-symbol returns a string s such

that (get.val S."s") = i. If no such string exists in S's domain, get-symbol returns

undef.
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7.2 The Top-Level

A Symmetric Lisp program PSL is translated into a corresponding Id program PId that has the

following top-level structure:

{ id_1 = error;
id_2 = error;

id-k = error
in

< translated version of PSL>}

Every identifier in PSL is bound at the top-level to the special symbol, error. Thus, any

reference to an identifier in the transidted version of PSL that is not defined in the evaluation

environment of that identifier will eventually get value error. The value of an Id program in

which an identifier reference yields error is assumed to be error also.

7.3 Map Expressions

A map expression serves two roles in Symmetric Lisp. As a program structure is acts a local

naming environment; as a data structure it plays the dual role of both a heterogeneous record

as well as a vector. Id provides direct support for local naming environments (as program

structures) via the block construct. The view of maps as data structures can be expressed using

symbol tables.

For example, the following map expression

(map n 1 el
n2 e2

nik ek)

(where each of the ei are regions) can be translated into the following Id program fragment:

{ a = array(1,k);
arL] = < translated version of e.>;
a[2] = < translated version of e2>;

a[k] = < translated version of ek>
n1 = (a,1);

n2 = (a,2);
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nk = (a,k)

in (a.(make-symboltable (("n1",1) ("n2",2) ... ("nk,k)

a is a fresh name guaranteed not to occur free in any of the ei. The above Id fragment evaluates

each of the k expressions defined in the Symmetric Lisp map in a local environment; because

blocks in Id are mutually-recursive, free references to any of the ni made by any of the si are

resolved in a manner consistent with the name-lookup rule for Symmetric Lisp identifiers. We

describe the exact translation of identifiers below.

Note that identifier ni in the block is bound to a tuple whose first component is the array

representation of the map being constructed and whose second component is the index into

the array that contains ni's value. This tuple effectively represents ni's I-value; it defines the

address (rather than the value) of the region denoted by ni. We show how to derive the r-value

of a named-region below. The reason for binding identifiers to -values rather than r-values is

due to the fact that regions can be side-effected; by recording the -value of an expression, it

becomes straightforward to side-effect a region when necessary. Expressions which require the

r-value of an identifier must explicitly destructure the tuple representation of the 1-value. The

1-value contains the information to retrieve the identifier's r-value.

The result of the block is a two-tuple consisting of a k-element array a and a symbol-table. The

ith element in the array contains the value of the ith element in the Symmetric Lisp map; the

symbol-table associates each name (represented as a string) defined in the map with an integer.

This integer represents the index in a that contains the binding-value of the Symmetric Lisp

identifier in the map.

In the above fragment, every region expression is named and appears on the right-hand side of

the binding statement whose left-hand side is the name of the region; a map expression whose

ith region (say e) is unnamed would be translated by binding a[i] directly to e; i would not

be in the range defined by the symbol-table associated with a.

Because arrays are non-strict, the result array can be returned as the result of the block even as

expressions within it continue to evaluate. The two elements of the tuple structure, the array

a and the symbol-table embody the two data-Etructure related facets of Symmetric Lisp maps:

the array allows map elements to be selected by position; the symbol table will be used to

support name-based selection. Given this representation for maps, we now proceed to describe

the translation of the other fundamental Symmetric Lisp operators.
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7.4 Translating Identifiers

The translation rule for identifiers depends upon whether their 1-value or r-value is needed. We

will see how to use the 1-value of an identifier when we examine assignment operations; for now,

we restrict ourselves to determining the r-value of an identifier.

The map expression:

(map
y:1

(map
x . 2
(+ x y)))

would be translated into the following Id program fragment:

{ a = array(1,2);
al1 = 1;
y = (a,1);
a[2] = { b = array(1,2);

b[13 = 2;

b(2] = { (arr-1,index-1) = z;
(arr_2,index_2) = y;

in
arr-l[index1] + arr_2[index_2] };

x = (b,1)

in
(b,makesymbol-table(("x", ))) }

in

(a,make.symboltable(("y",i))) )

(We assume that the "+" operator is not redefined elsewhere in the lexical scope of this frag-

ment.) The plus operation destructures the tuple that defines the I-value for x and y and uses

the information provided therein to access their r-values.

7.5 Scope-Expressions

Symbol-tables are used in the implementation of scope-expressions. Consider a Symmetric Lisp

expression of the form

(with al e2)

Let ni,n2,. .. ,nk occur free in e2. (For a precise description of what we mean by "free". the

reader is referred to page 59.)
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We can exhibit a translation into an Id program fragment that would capture the behaviour of

the above scope-expression as follows:

{ (a,s) = < translated version of el>
vl = (get.val s "l"); xl = nl;
v2 = (get.val a "n20); x2 = n2;

vk = (getval s "nk"); k = nk;
in

{ ni = (if vi = undef then xl else (a,vi));
n2 = (if v2 = undef then x2 else (a,v2));

A = (if vk = undef then xk else (a,vk))
in < translated version of e2>}}

We assume that a, s, vi and xi are fresh variables. The evaluation of the environment-specifier

yields a tuple (as per the translation of maps given in the previous section); the second element

of this tuple is a symbol-table containing the names defined by the map. Each xi is bound to

the value of ni in the lexical environment of the scope-expression.

The body of the scope-expression is evaluated in an environment in which each free name is

bound to either its value in the scope-expression's lexical environment or to its value in the

environment yielded by the environment-specifier (i.e., if ni is a free variable in the body, then

it is either bound to its value in the map yielded by evaluation of the environment-specifier or

its value in the scope-expression's lexical environment).

Suppose that a free name is de'ined by the environment-specifier but is not defined in the

lexical environment of the scope-expression. Thus, for example, it may be the case that ni is

defined by the map yielded by el but is not defined in the lexical environment. The reference

to ni in the above skeleton would propagate up to the top-level. Recall that the top-level block

binds each identifier referenced in the program to a special error value; as a result, xl will get

bound to the symbol error. If ni is not defined by el, any reference to it made in the body

of the scope-expression will result in an error being raised. The correctness of this translation

relies on the assumption that the set of free names in the body of the scope-expression can be

determined. This assumption is valid in the subset we are considering here, but may not hold

in the presence of operators such as read which may coerce arbitrary text into bona fide map

objects. Thus, the program fragment:

(with (map z: 1) (+ x (mlast (read io-stream))))
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where (read io-stream) returns map y will result in a Id (as opposed to Symmetric Lisp) runtime

error if y is not defined in the lexical environment of the scope-expression. Expressions like read

that can dynamically introduce new names into a program are best interpreted. Although Id can

handle the lexical name-lookup rule found in Symmetric Lisp, there is no convenient underlying

environment structure visible to the programmer that can be used to dynamically search for a

variable; such a structure must be built on top of Id via appropriate abstractions.

If a free name is not bound in the environment-specifier, its value in the specifier's symbol-

table would be undef; a name bound to undef takes its value in the lexical environment. (This

implementation assumes, of course, that undef is a symbol guaranteed not to be used as the

binding value of a name in the Symmetric Lisp map.)

Each of the ni in the inner block are bound to 1-values; thus, side-effects on these identifiers in

e2 will be visible outside; in particular, if e2 side-effects an identifier defined in ni, the side-effect

will be visible to other expressions that access the array containing the values of el's regions.

For example, given a Symmetric Lisp program fragment of the form:

(map
f : (lambda (foo bar) ... )
(with (map z : 1

y :3)
(f x y)))

the corresponding Id translation would be of the form:

{ a = array(l,2);
a[11 = < translation of (lambda (foo bar) ...

a[23 = { (a,s) = { a2 = array(l,2);

a2[11 = 1;
a2[2] = 3;
x = (a2,1);

y = (a2,2)

in (a2,makesymbol-table (("x",l) (1y",2)))};

vl = (get-val a "t"); xl = f;
v2 = (getval a "x"); z2 = x;
v3 = (getval a "y"); x3 = y

in { f = (if v1 = undef then zi else (a,vi));

x = (if v2 = undef then x2 else (a,v2));

y = (if v3 = undef then x3 else (a,v3))

in { (arr,index) = f
in (< translation of the application> }}}

f = (a,l)

in (amakesymboltable (("f",l))) }
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In this example, the body of the scope-expression contains three free variables, t, x and y.

The environment-specifier defines a map containing two regions; the first region contains a

binding for x and the second region contains a binding for y. I is a function defined in the

scope-expression's lexical environment.

The exact translation of lambda expressions is shown in Section 7.8 but suffice it to say for now

that Symmetric Lisp lambda expressions are translated into Id functional objects.

There is ample room for improvement in the translation. Given an implementation of the

environment inferencing algorithm described in the last chapter, none of the conditional tests

for undef in the above fragment would be necessary; the inference procedure would determine

that the environment-specifier always defines names x and y and never defines name f. The

code generated would bind f to xt and x and y to v2 and v3 resp.

7.6 The Layer Operation

7.6.1 Comprehension Statements in Id

Before presenting the translation of the layer operator, we briefly explain some of the array and

list defining constructs found in Id that we use extensively in the translation. A more detailed

description may be found in [53].

A list comprehension statement (as used in the examples below) is written:

{: aII GEN1&GEN2&... GEE.)

where a generator is written

pat <- el FILTERI ... FILTERn

Each el evaluates to a list and pat is matched to each element in the list, generating a list of

environments that bind the pattern variables. In Id, each el may also be applied to a filter

which is either written when epw or unless epu. Those environments in which epw evaluates

false or an epu evaluates true are discarded.

The expression e is evaluated in each environment produced by the generator and the values

yielded are collected into a list (in the same order) which is the result of the whole expression.

There may be more than one generator in a list comprehension. Each generator is evaluated
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left to right; the net result of the generator sequence is a sequence of environments containing

bindings for the pattern variables of all the generators.

An array comprehension statement (as used in the examples below) is written:

{ array (lower-bound, upper-bound)
I Cell] = e12 II GEl
I ...

I lent] = eM2 II GEN }

The array comprhension stat:ment behaves similarly to the list comprhension form except that

the ej 1 are integer expressions; the ej2 produce the value to be stored in the index specified

by eji. The generators produce a sequence of environments in which the ejil and ej 2 are

evaluated. All clauses are evaluated simultaneously and the top-to-bottom order of the clauses

has no signficance. We note that the more general form of an array comprehension statement

allows arbitrary n-dimensional arrays to be built.

7.6.2 Translating the Layer Operation

The translation of the layer operation is straightforward. The expression (layer M N) can be

translated into Id as follows:

(al,st) = < translation of M >;
(a2,92) = < translation of N >;

(l,j) = bounds al;

(l,k) = bounds a2;
names-inM = (namesin.table al);
names-inl = (names_intable s2);

NM-intersection = intersection names-inM names-inIN;

NM-intersect-indices = {: (get-val s2 s) 11 s <- NM-intersection};
intersection-size = length NM-intersection;

count-indices 1 i = { f x y = if x > i then 0 else 1;
in foldl-list (+) 0 (map-list f 1) };

NM-dif = difference names-inN naes-inM;
1_M-dif-indices : x II x <- 1 to k unless (member x N_M_intersect.indices)};

layered-array = { array (1,j+k-intersectionsize)
I [t] = alt] II t <- I to j
I (t] = a2Cx]

II t <- j+l to j+k-intersection-size & x <- IM-dif-indices }
M-symbols = {: (s,(getval al 9)) II a <- names-in-M};
NIsymbols = {: (s.j + (getval s2 s) -

count-indices NM-intersect-indices

(get.val ss s)) II s <- _M-dif }
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in
(layered-array, (makesymbol-table (union &-symbols I_symbols))) }

We assume that binding-names introduced in the block are fresh names that do not conflict

with names found in the Symmetric Lisp program.

To determine the structure of the map yielded by the layer operation requires determining the

intersection of names defined by the maps being layered. Let the two maps be M and N. If

a name x appears in both maps, we discard the binding associated with x in N in the layered

map.

The layered-array is an array whose size is the sum of the sizes of the array representation of

the two arguments minus the number of elements that are defined with the same name in the

two maps. Thus, given a map M (whose array representation contains m elements) and a map

N (whose array representation contains n elements) and where both M and N have x names

in common, the array representation of the layered map will contain m + n - x elements.

The first m elements of the layered array will be drawn from the elements defined by M's array.

The remaining n - x elements in the layered map will be drawn from a subset of the regions

defined in N. This subset consists of those regions in N that are not bound to names also found

in M.

The domain of the symbol-table for the map returned by the layer operation consists of the

unique names defined by M and N; the indices to which these names are bound in the layered-

map is computed as follows: names defined by M retain the same indices in the symbol-table

built for the layered-map as they do in M's symbol-table; the indices of names defined by N

that are in the layered-maps symbol-table is determined by adding the symbol's index in N's

symbol-table to m, the starting offset in the layered-map's array where N's elements are added,

and subtracting from this the number of regions in N before this region that are bound to

names defined in M. The count-indices function computes this sum.

Note that the sharing rules found in Id are similar to those defined in Symmetric Lisp: scalar

values defined by the two argument maps to layer are copied into the array defining the new

layered map; non-scalar, structure values are shared.

Much of the code shown could actually be computed statically in many cases; for example, if

the structure of K and I is known, it is possible to statically determine the intersection of their

names as well as the structure of the layered map and the value of the indices to which names in
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the layered are to be mapped. Such optimizations would greatly simplify the translated version

of the program.

7.7 Selection

The main selection operators select and index are easily translated into a suitable Id repre-

sentation. The expression (select X id) would be represented as

{ (a,s) = < translation of M>;
al = array(1,1);

alEl] = aE(ge-val a id)]
in

(al,(make-symbol-table ((id.1))))}

The object returned by the above fragment is a tuple; the first element of the tuple is an array

whose sole element contains the value of id in 9 and second element is a symbol-table that binds

id to 1, the index in the array that contains its value.

The expression (index N e) is translated similarly:

{ (a,s) = < translation of N>;
n = < translation of e>;
al = array(l,l);

all] = a[n];
in

(al, (makesymbol.table ()) }

The ulast operator simply returns the value of the last element in the array used to hold the

values of its argument map's regions. The expression (mlast N) is translated as:

{ (as) = < translation of M>;
(,j) (bounds a)

in a[j] }

7.8 Abstraction and Application

Kappa and lambda abstraction expressions in Symmetric Lisp have a straightforward repre-

sentation in Id in terms of unnamed functions. The main difference between Symmetric Lisp's

treatment of abstraction and Id's is the fact that Id functions are fully curried while Symmetric

Lisp functions are not. It is responsibLity of the Symmetric Lisp to Id translator to check that
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the arity of a Symmetric Lisp function applied to n arguments is also n. With this assumption

in mind, one can translate a Symmetric Lisp lambda expression of the form:

(lambda (Wl x2 ... zu)
el 2 ... ek)

into an Id fragment of the form:

{fun z' z2' ... zn'

< translation of

(ulast

(map xl xl'
x2:

xn xn'

el e2 ... ek))>l

where the xi' are new variables.

A Symmetric Lisp function application, (f al a2 ... an), is translated into the Id fragment:

(translation of f
translation of al

translation of an)

A Symmetric Lisp application is simply an Id application in which the function and each of its

arguments have been suitably translated. Note that this translation preserves the Symmetric

Lisp sharing rule: if any of the ai evaluate to scalars, their values are simply bound to the

corresponding formal in the translated version of f. Map structures, on the other hand, will get

translated into addresses; thus, it will be possible for expressions in the body of the function to

side-effect map objects since they will have access to their addresses.

For example, the function fact written in Symmetric Lisp:

fact : (lambda (n)

(it (- n 0) 1
(n * (fact (1- n)))))

would be translated into the following Id block (assume that "*" "-" and " are predefined

and that the -value of fact is (f,i)).

{fun n'

{ (a,s) = { a = array (1,2);

al1 - a';
a[2] = { (arrindez) = n;

in if arr[indox] == 0 then 1
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else arr[index] *
(f[i] (arr[index] -1)) };

n = (al)

in (a, makesymbol-table ((n",1)) }
(1,j) bounds a

in a[j) }}

The implementation of kappa abstraction is slightly different than the implementation of lamb-

das. A kappa abstraction of the form:

(kappa (xl x2 ... xn)

el e2 ... ek)

is translated into an Id fragment of the form:

{fun xl' x2' ... in'
< translation of

(map xl x1'

x2 : x2'

xn : xn

.1 e2 ... ek))>}

where the xi' are new variables; a kappa abstaction does not have an mlast as part of its body.

The translation of kappa application follows the same rules as the translation of a lambda

application.

7.9 Sequential Evaluation

The seq special form in Id can be used to implement the seqmap construct in Symmetric Lisp.

A sequential map of the form:

(seqmap

nI : el
n2 :e2

ak : ek)

can be translated into the following Id program fragment:

{ a array(lk);

ni (a,1);

n2 = (a,2);

nk = (a,k)

(seq
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a[l] a el;
a[21 = e2;

L[k] = ek)
in (a,(make-symbol.t able ('nl',i) ('n2",2) ... (nk",k))))j

The seq form prevents the evaluation of its ith component expression until the i - 1 st expression

has yielded a result. In the above example, the evaluation of e2 will not begin until after al has

yielded a result and this result has become bound to a[l]. Note that all names defined by the

seqmap are recorded, in the Id code, as part of the lexical environment in which the ei evaluate.

This means that if ei requires the value of name nj in order to return a result where j > i, a

deadlock would arise; the evaluation of ej will never commence because ei will never return a

result.

7.10 Filling an Empty Region

The fill operator is a generalization of the Id I-structure assignment operator. Unlike I-

structure assignment, filling a region requires examining the region being filled to ensure that it

is either empty or contains a value that is identical to the value that is to fill it. We introduce

a new instruction called ompty?-and-set that, given an I-structure element, i, and a value v,

tests whether i is empty and if so, atomically sets i's contents to be v2 ; empty?-and-set returns

true if the I-structure was empty and false otherwise.

The translation of the expression, (fill x v), is shown below:

{ (arr,index) = x;
in
if (not empty?-and-set arr[index] v) then

if azrr[index] == v then v
else error }

(error is a special error symbol.)

There is a a similar translation for an expression of the form (fill el.x e2):

{ (a,s) = < translation of 01>;
vl = (getval a "x); xl = x

2 The implementation of this operator is straightforward in a dataflow machine that allows the tag bits of a

data structure to be extracted. One of the tag bits of interest in an I-structure is a presence bit that indicates
whether the I-structure has a value or not. The empty?-and-set predicate can be compiled into a primitive
dataflow machine instruction that extracts the presence bit field of its argument and performs an assignment on
the I-structure if needed.
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in
{ (arr,index) = (if v1 = undef then x1 else vW);
in if (not o.pty?-and-set axr(index] v) then

(if ar[index] == v then v
else error)}}

There is a similar translation for index selection.

The translation for assignment expressions is similar to that given above for fill with two slight

changes: (1) There is no equality test on the element being set. The translation for set does

not check whether is component structure is empty or not. (2) Since assignment can change

the contents of a cell which already has a value, we need a new assignment operator (written

:=) that replaces the contents of an array cell without checking whether the cell alread\ is

been assigned a value.

7.11 Implementing Locks

The holding expression when used in conjunction with locks can be used to express applications

where mutual exclusion of a shared resource is required. We can implement locks in a dataflow

system via I-structures. The basic observation in the implementation of locks and mutual

exclusion is that an I-structure whose presence bit is not set prevents an expression from

accessing the I-structure's contents; thus, by manipulating presence bits in various way, we can

use I-structures as semaphore-like objects.

To manipulate locks, we introduce two new primitive instructions. The first, set-presence-bit,

takes as its argument a tuple, (1,i), that represents the 1-value of an I-structure element and

sets the presence bit of that element "on" regardless of whether there is an element in the

I-structure or not.

The cecond instruction, read-lock, given an I-value of an I-structure, (1,i), tries to read the

I-structures contents; if the presence bit of the I-structure is "on", i.e., if the structure is

readable, the instruction sets the presence bit "off" thereby making the I-structure element

unreadable. The instruction itself returns no values; it simply sends signals to its destinations

when it executes.

For example, consider the following program fragment:

Y : lock
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(holding x (set y (1+ y)))

that acts like an atomic counter. The binding, z lock, is translated as follows (assume that

x's address is (l,i)):

1(i) = array(l,l);
(set-prosence-bit (i,i))

A lock is simply a one-element array; the set -presence-bit instruction makes the lock accessible

to other expressions.

The holding expression is now translated thus:

(seq
(read-lock (l,i))
{ (arr~index) a y;

in arrCindex] :a axrindexj + 1};
(set-proence-bit (l,i)))};

The holding expression is translated into a seq form. The seq construct evaluates its component

expressions in order. In the abstract, the read-lock operator atomically reads the I-structure

and sets the structure's presence bit off; this effectively preventing any other expression from

reading the structure. In the abstract, the set-presence-bit instruction resets the lock enabling

other read-lock instructions to access it.

The above scenario is complicated by the fact that there may be many read-lock instructions

simultaneously evaluating. We must, therefore, address the question of what happens if a

read-lock instruction finds that the I-structure is not readable - such a situation would arise if

another read-lock instruction executed prior to this one. In this case, the instruction is placed

on a waiting queue. There may be potentially many such instructions that attempt to read the

lock; each instruction is placed on the same wait queue.

We must also take care to prevent race conditions once the lock is released. To avoid a race

condition, we ensure that, before the presence bit of the lock is turned back on, there are

no read-lock instructions waiting on the queue associated with this I-structure. If there are

waiting instructions, we simply remove the first one, and send a signal to its destinations; the

presence bit of the lock need never be turned on in this case since there are instructions waiting

to simply turn it back off. Thus, the implementation of the set-presence-bit instruction must

check that there are no instructions waiting on the lock before actually setting the presence bit.

Note that this solution prevents starvation (since waiting read-lock instructions are removed
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in FIFO order) as well as race conditions (since the presence bit is set on only if there are no

instructions waiting to access the I-structure element).

The translation of a holding expression of the form, (holding I e), where e is a map expression

or an expression that contains a map (e.g., a lambda application) is much more complicated.

To guarantee serializability, we require that every sub-expression of a terminate before the lock

is released. A termination signal of some sort must be received from each sub-expression of

e before the reset operation can be executed. This signal indicates that a value has been

produced by the sub-expression. The terminate? operator, given an object z, blocks if x is

not a value and returns true otherwise. If x is a scalar, it returns true immediately; if x is a

map object, it returns true when each of the map's component elements are values. Thus, if a

map M has as a sub-expression another map N, then, by definition, (terminate? ii) returns

true only when all of M's sub-expressions and all of N's sub-expressions yield values. This

constraint on parallelism is very severe and it remains to be seen whether it is viable on a

mulitprocessor dataflow machine3.

7.12 Summary

The translation sketch given in this chapter exploits the lexical scoping rules found in Id to model

as much of Symmetric Lisp's own name lookup-rule as possible. There are two places, however,

where a standard lexical name-lookup rule is not sufficient or appropriate. The first is in the

translation of scope-expressions. Since the lexical-evaluation environment of an expression can

be superseded by embedding the expression inside a with form, some mechanism that records

the names defined by a map expression is necessary. The symbol-table abstraction was used for

this purpose. A symbol-table effectively bridges program-structure names with data-structure

ones; every identifier in a Symmetric Lisp program has two representations in the Id translation:

the first as a program identifier found in the block representing the map expression in which it

is defined and the second as a string in the symbol table that serves as the representation of

the map data-structure.

The other area where the Id scope-rules and naming conventions are not appropriate is in

the translation of expressions that dynamically create new names. The read special-form is

3We note that implementing such an operation, while not easily expressible in a high-level language like Id is
surely implementable in the base language of dataflow graphs.

! , , i I II I I
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characteristic of this class of expressions. To make the translation truly robust, we must ensure

that an erroneous Symmetric Lisp program does not result in Id-based runtime errors. In

particular, a read expression that returns a map object that refers to a free name n not declared

anywhere in the translation will cause an Id runtime error indicating that the Id variable n is

unknown. A more desirable solution would be to have this error captured by the virtual

Symmetric Lisp machine that runs on top of Id; it is this same machine that interprets error

symbols, handles exceptions etc. To support the translation of dynamically-generated names

we must require that the value of every name be mediated by a lookup function; in this ,ase, we

must sacrifice the simplicity afforded by exploiting Id's static scoping discpline in implementing

Symmetric Lisp's lexical name lookup rule in favour a more generalized lookup rule. Instead

of translating maps into Id blocks, maps must be translated into an environment abstraction

structure; names would need to be translated into strings and each name reference regardless

of whether found in a scope-expression or in a simple map expression must be translated via

the lookup function. The structure of this translation would look very similar to the structure

of the abstract interpreter that defines the operational semantics of the language.

In terms of giving insight into the parallel evaluation semantics of Symmetric Lisp, our trans-

lation sketch can be used to understand how Symmetric Lisp evaluation semantics compares to

other fine-grained parallel languages. The translation omits, however, many important low-level

details. We have ignored issues relating to code-mapping, scheduling policies among concurrent

processes, and resource management. We feel, however, that these issues are endemic to parallel

systems in general and, consequently, we expect that solutions to these problems developed for,

say a dataflow system intended to implement Id, can be used to good effect in the implementa-

tion of Symmetric Lisp as well. Devising solutions to these questions forms an important area

of future research.
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Chapter 8

Conclusions

We began our investigation of symmetric languages on the premise that program structures and

data structures are related to one another in a strong sense. We posited that the fundamental

relationship between these structures lie in their implicit support for the construction and

manipulation of naming environments. Given this observation, we posed the question, "What

is the structure of a programming language that is based on a model in which there is no

distinction between program structures and data structures?" Since our hypothesis regarding

the similarity of program structures to data structures rested on the fact that both define naming

environments of one sort or another, we proposed a programming model (called the symmetric

model) whose fundamental program structure has the same semantics and representation as its

fundamental data structure. In the symmetric model, program structures and data structures

behave as first-class naming environments.

We chose to examine the behaviour of a symmetric language in the context of a non-strict

evaluation model: the component elements of a program or data structure may be examined

even as other elements in the structure continue to evaluate. Naming environments are, thus,

parallel program and data structures.

8.1 Contributions

The main thrust of thesis has been in the area of programming language design. Language

design, by its very definition, is a very subjective endeavour; design decisions are often governed

as much by subjective biases on the part of the designer as they are by objective scientific

195

M--



196 CHAPTER 8. CONCLUSIONS

criteria. Nonetheless, there are some important objective metrics that are generally accepted

by which language designs have traditionally been judged.

One important metric is erpressivity; in our view, an expressive language is simple (i.e., it

contains relatively few primitives) and its "phrasebook" is short - little verbiage is required

to define within the language all the programming phrases a programmer is likely to want.

Expressivity has traditionally been at odds with simplicity in the sense that simple languages

often induce bulky or complex programs outside fairly narrow domains.

Much contemporary work in programming language design has focussed on trying to reconcile

these two goals and there have been several highly successful results: Pascal and Scheme are

two good examples.

While our goal in investigating the design of symmetric languages has been in the spirit of these

language design efforts, our approach and specific interests have been much different. Unlike

either Pascal or Scheme which were designed partially as a reaction against their complicated

(albeit expressive) contemporaries (PL/1 and Algol-68 for Pascal and MacLisp for Scheme),

the design of Symmetric Lisp was not intended to offer an alternative to any one language; it

is the outgrowth of the initial observation that the separation of program-structures and data-

structures in modern languages (in general) hinders expressivity and introduces complexity.

The idea of eliminating complexity by designing a uniform and self-consistent language is by

itself not a unique thought; functional languages eliminate complexity by treating functions as

their basic program object; object-oriented languages eliminate data structures by transforming

all objects into programs. To our knowledge, however, the idea of achieving uniformity by

representing program structures as data objects has not been studied. We, therefore, expect

that language designers may find the programming model developed in this thesis to be a useful

thought-tool in which to understand the relationship between program structures and data

structures found in many diverse languages. Because we have chosen to consider symmetric

languages in the presence of a non-strict evaluation model, we also expect that the results

described in this thesis can be used to understand competing parallel programming paradigms

as well.
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8.1.1 Summary

Broadly speaking, then, the main contribution of this thesis has been to give a detailed account

of the semantics, implementation and application of a language based on the symmetric model.

The thesis has argued that such a model provides a unified framework upon which to understand

the relationship between many superficially-different program and data structures found in

modern languages. Moreover, the thesis also contends that such a model supports certain novel

programming paradigms not easily represented within other existing models. Specifically, the

thesis has addressed the following questions:

1. What is the structure of a symmetric language program and what are the operators that

should form the kernel of a symmetric language?

2. What is the formal semantics of a symmetric language? What does the formal semantics

tell us about how symmetric languages are related to languages based on more classical

models?

3. What are the kinds of uniformity that the symmetric model supports and what is the

impact of such uniformity on program methodology and construction?

4. What is the ramification of first-class naming environments on type-inference and name-

translation?

5. What constraints does a symmetric language's non-strict evaluation semantics impose on

the semantics of the base language to which it is compiled? What linguistic mechnaisms

must a base language provide to efficiently support a symmetric language?

Chapter 2 and 3 addressed the first question by presenting the semantics of Symmetric Lisp.

We defined the map as the fundamental environment constructor and showed how maps can be

used to serve as both program structures as well as data structures.

Chapter 4 examined two manifestations of program/data uniformity: (1) uniformity of different

program and data constructs and (2) uniformity of data and process. We examined how super-

ficially different program structures found in other languages can be translated into Symmetric

Lisp. We showed how blocks, packages, inheritance systems, guarded commands, and lazy data

structures could be all thought of as structures that manipulate naming environments; each of
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these structures were translated into operations over Symmetric Lizp maps. As an example of

programming paradigms ideally suited to the symmetric ri'del we developed a new program

structure called the parallel process lattice. Externally, the lattice was treated as a large data

stri-ture whose fields represented data points of one sort or another; internally, it consisted

of a collection of long-lived concurrent processes. Both the lattice-as-a-process view as well as

the lattice-as-a-structure view are accomodated equally well by implementing the lattice as a

map. This chapter also examined the role of maps as a parallel process encapsulator; among

other things, we showed how maps could be used to implement cyclic networks and resource

managers.

Chapter 5 examined yet another manifestation of uniformity: the uniformity of the command-

level domain and application-level domain. We sketched the design of a concurrent interpre-

tative programming environment in which Symmetric Lisp acts as the base language. Using

first-class parallel environments we showed how one could build a concurrent Symmetric Lisp

front-end. First-class environments can be structured to serve as file-systems. Non-strict evalu-

ation allows one to build daemon processes that can monitor different states of the programming

environment non-intrusively.

The last two chapters of the thesis addressed questions of compilation and implementation. In

Chapter 6, we developed an extended polymorphic type-inference system for Symmetric Lisp

called an environmest-inferencing system that could be used as the basis for implementing a

procedure to statically determine the proper evaluation environment of identifiers in a restricted

subset of the language.

The non-strict evaluation semantics of maps makes the language of dataflow graphs an ideal

candidate to serve as the base language for a Symmetric Lisp implementation. Chapter 7,

therefore, presented a translation scheme from Symmetric Lisp into Id[53] a high-level parallel

language whose compilation into dynamic dataflow graphs has been well-studied.

8.2 Directions for Future Research

Although this thesis has given a comphrehensive description of Symmetric Lisp, there are a

number of issues relating to language design, programming environments, compilation and

implementation of symmetric languages in general that have yet to be addressed. We examine
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some of these issues below.

Language Design

There are a few important language-related issues that have not been addressed fully in the

thesis.

The symmetric model was presented in terms of maps and operations over them. The particular

topology chosen for maps was a simple linear array of regions. Neither the representation

of programs as maps nor the topology of maps as vectors are fundamental to the symmetric

model per se; one could conceivably have chosen alternative representations and topologies that

also provide the necessary foundation for modelling program and data objects. Alternative

representations for program structures within the framework of the symmetric model is an

interesting avenue of research.

There are a number of open issues dealing directly with Symmetric Lisp. The first issue has

to do with the implementation of an exception handling mechanism. We saw an example

where exceptions would be useful on page 138 wherein a file-lookup operation implemented via

with should raise an error if the file in question is not found in the specified directory; many

other examples can be easily brought to mind. Exceptions axe a restricted form of general

continuations[32) and it is yet to be seen whether there exists a reasonable continuation-based

semantics for parallel non-strict languages. Non-strictness and continuations interact in the

following sense: a non-strict expression spawns concurrent tasks for each of its sub-expressions;

if a sub-expression raises an exception to handle an error, however, it is often desirable to be

able to stop other concurrently evaluating sub-expressions. The mechanism by which this is to

be done is a topic for investigation.

Secondly, we proposed locks as a primitive data object to be used when access to a shared

mutuable structure must be serialized. The strict semantics of a holding expression, however,

can lead to severe constraints on concurrency. It is not yet clear that this is a viable mech-

anism in the context of what is otherwise a fine-grained, non-strict evaluation model. The

implementation costs of locks and holding expressions have yet to be assessed.

As a related issue, we lack experimental data on the cost of using the open-map abstraction

as the basic stream communication mechanism. The overhead involved in implementing open-
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maps as stream abstractions in which each stream element is a map and in which each stream

access must be mediated via a lock is yet to be determined.

The Programming Environment

We argued in Chapter 5 that first-class environments can be used to model file-systems in a

Symmetric Lisp language-based workstation. There are a number of important properties of

file-systems, however, that Symmetric Lisp environments do not possess. Of these, the most

important are (1) support for persistence and (2) support for protection.

Support for persistency requires mechanism to guarantee recovery of files in the event of system

crashes; support for protection require', mechanisms to ensure that protected files can be only

accessed as specified by their creator. Symmetric Lisp does not adequately address the per-

sistency question because we have not yet a developed a data recovery scheme for Symmetric

Lisp maps. Maps by themselves do not pose any special problems in the implementation of

persistence, but the fact that they are the only structure object in the language raises some

important questions on garbage collection of small objects found on a persistent store.

Secondly, the protection facilities provided by the priv prefix is undermined by the fact that

the contents of regions can be selected by position as well as by name. The model of protection

in Symmetric Lisp is based on user-agreed convention; there is no means to enforce a protection

policy given the semantics of maps as they are currently defined.

Compilation

There are several important compilation issues that we did not address in the thesis. The first

has to do with augmenting the type-inference system to support side-effects. We hinted at a

possible approach to supporting side-effects that works by keeping track of which objects are

mutable and which are not, but there are many subtle details in this proposal that have to be

addressed.

We also omitted the proof of the soundness theorem given in Chapter 6 as well as the con-

struction of the algorithm to compute principal types. Extending the type system to support

interpreter-based operations such as read is also an important topic for future research.
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Implementation

Finally, there are many open questions still remaining on the system-level implementation of

symmetric languages. These questions concern architectural support for environment struc-

tures, process scheduling and communication, and resource management policies for environ-

ments. We presented one high-level implementation approach in terms of dataflow systems;

there are still many unanswered questions about the implementation of Symmetric Lisp on

alternative architectures.

In Closing

We forsee future work on symmetric languages concentrating primarily on the issues cited above.

This is not to suggest that there is no further work remaining on the semantics of symmetric

languages or in understanding the paradigms they support. Although the ultimate success of

the symmetric language effort will be measured in terms of how sucessful we are in devising

satisfactory solutions to these open questions, we believe that, independent of any practical

realization, symmetric languages offer themselves as an expressive thought-tool that present

programming languages in a new and interesting light.
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